
Master’s thesis

Methods of Document Retrieval for Fact
Checking

Bc. Martin Rýpar

Faculty of Electrical Engineering
Department of Computer Science
Supervisor: Ing. Jan Drchal PhD.

May, 2021

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

438219Osobní číslo:MartinJméno:RýparPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

Datové vědySpecializace:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Metody document retrieval pro ověřování faktů

Název diplomové práce anglicky:

Methods of Document Retrieval for Fact Checking

Pokyny pro vypracování:
The task is to develop methods of document retrieval to be deployed in the
fact-checking scenario.
1) Familiarize yourself with methods of document retrieval aimed for the
fact-checking task. Focus on the Czech language and neural network
approaches.
2) Work with the Czech Wiki FEVER dataset and/or with other datasets
supplied by the supervisor.
3) Select several existing methods focusing on those potentially applicable
for the Czech corpora (e.g., tokenization, existing embedding model, etc.).
4) Evaluate and compare the methods.

Seznam doporučené literatury:
[1] Thorne, James, et al. "FEVER: a large-scale dataset for fact extraction and
verification." arXiv preprint arXiv:1803.05355 (2018).
[2] Thorne, James, et al. "The fact extraction and verification (fever) shared task."
arXiv preprint arXiv:1811.10971 (2018).
[3] Chang, Wei-Cheng, et al. "Pre-training tasks for embedding-based large-scale
retrieval." arXiv preprint arXiv:2002.03932 (2020).
[4] Yang, Wei, et al. "End-to-end open-domain question answering with bertserini."
arXiv preprint arXiv:1902.01718 (2019).
[5] Binau, Julie, and Henri Schulte. "Danish Fact Verification: An End-to-End
Machine Learning System for Automatic Fact-Checking of Danish Textual Claims."
(2020).

Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. Jan Drchal, Ph.D., centrum umělé inteligence FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: _____________Datum zadání diplomové práce: 18.09.2020

Platnost zadání diplomové práce: 19.02.2022

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Jan Drchal, Ph.D.

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZDP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZDP-2015.1

Acknowledgements

First of all, I would like to thank my supervisor Jan Drchal for his dedicated support,
guidance and friendly approach. I am very grateful for the opportunity to work with
him and all my current and former colleagues from the AI in Journalism project at AIC
CTU. They created such a pleasant and motivating environment, for which I would like to
express my great thanks to all of them. Last but not least, I would like to express a great
thank you to all my family, friends and my girlfriend for their endless support, without
which this work would not have been possible.

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources
of information in accordance with the Guideline for adhering to ethical principles when
elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the
Act No. 121/2000 Coll., the Copyright Act, as amended, in particular that the Czech Tech-
nical University in Prague has the right to conclude a license agreement on the utilization
of this thesis as school work under the provisions of Article 60(1) of the Act.

In Prague on May 21, 2021 .

Czech Technical University in Prague Faculty of Electrical Engineering
© 2021 Martin Rýpar. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has
been submitted at Czech Technical University in Prague, Faculty of Electrical Engineering.
The thesis is protected by the Copyright Act and its usage without author’s permission is
prohibited (with exceptions defined by the Copyright Act).

Citation of this thesis

Rýpar, Martin. Methods of Document Retrieval for Fact Checking. Master’s thesis. Czech
Technical University in Prague, Faculty of Electrical Engineering, 2021.

Abstrakt

Tato práce se zabývá př́ıstupy pro vyhledáváńı dokument̊u. Primárně se zaměřuje na
metody hlubokého vyhledáváńı s využit́ım jazykových model̊u a jejich srovnáńı s tradičńımi
TF-IDF a BM25 modely. Modely jsou zkoumány v doméně ověřováńı fakt̊u s ćılem je
posléze zakomponovat do systému pro ověřováńı výrok̊u. Naše výsledky potvrzuj́ı, že
př́ıstupy založené na jazykových modelech dokáž́ı překonat velmi solidńı a robustńı tradičńı
př́ıstupy. Př́ıstup spoč́ıvaj́ıćı v daľśım předtrénováńı jazykového modelu na úlohách rele-
vantńıch pro vyhledáváńı může přinést výrazné zlepšeńı, avšak za cenu deľśıho a pracněǰśıho
tréninku a potřeby velkého množstv́ı dat. Model ColBERT implementuj́ıćı nové paradigma
pozdńı interakce překonal tradičńı modely na obou souborech dat.

Kĺıčová slova vyhledáváńı dokument̊u, ověřováńı fakt̊u, vyhledáváńı informaćı, BERT,
TF-IDF, BM25, NLP

vi

Abstract

This thesis deals with approaches for large-scale document retrieval. It primarily focuses
on deep retrieval methods using language models and their comparison with traditional
TF-IDF and BM25 models. The models are investigated in the fact-checking domain with
the goal of eventually incorporating them into a system for verifying claims. Our results
confirm that language-based contextualized approaches can outperform very solid and
robust traditional approaches. The approach of further pre-training of language model
on retrieval relevant tasks can yield significant improvement, but at the cost of longer
and more laborious training and the need for large amounts of data. ColBERT model
implementing a new late interaction paradigm outperformed traditional models on both
datasets.

Keywords document retrieval, fact checking, information retrieval, BERT, TF-IDF,
BM25, NLP

vii

Contents

Introduction 1

1 Fact-checking 3
1.1 Problem description and goals . 3
1.2 Related work . 5

2 Background 6
2.1 Document Retrieval . 6
2.2 Traditional Approach . 7
2.3 Language Modelling . 11
2.4 Hybrid Approach . 20
2.5 Neural Approach . 21

3 Datasets 28
3.1 FEVER CS . 28
3.2 ČTK . 29
3.3 Data Quality . 30

4 Proposed Solutions 35
4.1 Baseline . 35
4.2 Neural Models . 35
4.3 Evaluation . 37

5 Experiments 38
5.1 Baselines . 38
5.2 ColBERT . 38
5.3 Pretraining mBERT . 38
5.4 Results . 40

Conclusion 42

Bibliography 44

A1 Acronyms 50

A2 Content of enclosed repository 51

viii

List of Figures

1.1 Demagog fact-checking . 3
1.2 Fact-checking Pipeline Scheme . 4

2.1 Document Retrieval Scheme . 7
2.2 Zipf’s law . 7
2.3 Bag of words representation . 9
2.4 Term frequency of TF-IDF vs. term frequency of BM25 10
2.5 Document length in BM25 . 11
2.6 Transfer learning . 12
2.7 Transformer architecture . 13
2.8 Illustrated attention mechanism . 13
2.9 Scaled Dot-Product Attention and Multi-Head Attention 14
2.10 Pre-training and fine-tuning procedures for BERT 15
2.11 Language Resource Distribution . 16
2.12 Language models comparison by number of parameters 18
2.13 Hybrid Approach Scheme . 20
2.14 Query–document matching paradigms in neural IR 21
2.15 SBERT architectures . 22
2.16 Pre-training tasks . 23
2.17 Inverse Cloze Task . 24
2.18 Self-attention patterns . 26
2.19 Linformer . 27

3.1 FEVER CS data example . 29
3.2 ČTK v2.1 data example . 30

5.1 Pretraining on ČTK learning curve . 39
5.2 Finetuning on ČTK v2.1 learning curve . 39

ix

List of Tables

3.1 Label distribution in FEVER CS dataset . 28
3.2 Label distribution in ČTK dataset . 29
3.3 Productivity, utility, coverage and harmonic mean of productivity and coverage

on FEVER CS . 33
3.4 DCI calculated on translated FEVER CS dataset claims. 33
3.5 DCI calculated on ČTK v2.1 dataset claims. 33
3.6 Productivity, utility, coverage and harmonic mean of productivity and coverage

on ČTK v2.1 . 34

5.1 Precision at k on FEVER CS test set. 40
5.2 Recall at k on FEVER CS test set. 40
5.3 F1 at k on FEVER CS test set. 40
5.4 Mean reciprocal rank at k on FEVER CS test set. 40
5.5 Precision at k on ČTK v2.1 test set. 41
5.6 Recall at k on ČTK v2.1 test set. 41
5.7 F1 at k on ČTK v2.1 test set. 41
5.8 Mean reciprocal rank at k on ČTK v2.1 test set. 41

x

Introduction

The Italian philosopher Gianni Vattimo, who combines the perspectives of a philosopher
and a sociologist in his work, came up with the concept of a trasnparent society. [Vattimo,
2013] The concept can be understood as another name for contemporary society, which
is also referred to as society of mass communication. According to Vattimo, one of the
factors, that made the transition from modern to so-called postmodern society possible,
was the emergence of mass media, which continue to play a decisive role in shaping it.

Mass media was expected to make the world clearer, more “transparent” and create a
more enlightened society. Nevertheless, it is they that, according to Vattimo, characterize
this society as more chaotic and complex. With the vast amount of information that
society generates, which can spread very quickly and efficiently thanks to mass media and
social networks, it is impossible to achieve anything like a fully informed view of the world.
The existence of that volume of information and data also allows the media to choose what
information to report and how to frame it. In this way, as Vattimo writes, they will not
only present a certain image of the world to their consumers, but also create it. However,
is the image of the world thus constructed necessarily the real one, or at least sufficiently
representative?

Such a phenomenon can be illustrated on the Czech media scene during the war in Syria
and the subsequent migration wave, which was a major source of struggle for the entire
European Union at the time. In 2018, the Czech media published over 80,000 articles and
reports on refugees and migration. [Prokop, 2020] This was roughly one article for every
two refugees and migrants arriving in Europe via the Mediterranean. By comparison, there
were only about 20,000 articles and reports on the climate crisis (including articles on the
melting of glaciers, carbon dioxide emissions, etc.) or on foreclosures and debt collection,
which began to emerge as serious problems for Czech society in this period. [Prokop, 2020]

Fake news also contributes significantly to the aforementioned opacity, chaos and in-
formation overload. Fake or otherwise misleading news may be created intentionally or
unintentionally, may be part of an organised disinformation campaign or may be mere
solitary acts. In any case, this is one of the problems that is increasingly heard in the
public space. In the context of fake news, there are very often calls for better education,
more media lessons or work with critical thinking. These are all very important elements
that should have a place in the educational process or at least be discussed. However, in
the era of deep-fakes and the rapid improvement of machine-generated texts [Hao, 2020],
it is also necessary to use these technologies and more advanced tools, which are now often
mentioned in connection with the notion of automatic fact-checking.

The existence of a huge amount of information and data and the possibility of their
very effective distribution to the desired target group are strong preconditions for the

1

effective dissemination of disinformation. At the same time, these are precisely the same
prerequisites that make it possible to combat it effectively.

Automated fact-checking cannot be thought of as a silver bullet to solve the problems
of misinformation, populism and information overload. But rather as a tool to help people
get their bearings and save valuable mental capacity. In that sense, it can also be any tool
that helps journalists, media analysts and other professionals process data more efficiently,
making their work better and more effective, which hopefully helps us all. The goal of
this paper is to contribute to the development of such a fact-checking tool, specifically the
part of the tool that is tasked with finding relevant documents from a large collection for
a given query.

”The Democrats don’t matter. The real opposition
is the media. And the way to deal with them is to
flood the zone with shit.” [Illing, 2020]

— Steve Bannon, Advisor to Donald Trump in
January-August 2017

2

Chapter 1
Fact-checking

1.1 Problem description and goals

As the motivation for this work was already given in the introduction, the following part
will describe the problem. Fact-checking is an essential component in the process of news
reporting, or at least it should be. Commonly interchangeably used terms fact-checking
and verification are becoming more and more differentiated recently. [Silverman, 2014]
According to [Kovach et al., 2007], verification is the essence of journalism, a discipline
further described as a scientific-like approach of getting the facts, which also involves
verifying the source, time, location and other circumstances. Fact-checking on the other
hand is more specific application of verification process focused on evaluating the veracity
of a claim in some context.

Figure 1.1: Demagog fact-checking. Source: https://demagog.cz

Fact-checking can be illustrated on the Czech Demagog1 project, which is based on
PolitiFact2 and FactCheck.org3 projects, and which manually evaluates claims, usually

1https://demagog.cz
2https://www.politifact.com/
3https://www.factcheck.org/

3

https://demagog.cz
https://demagog.cz
https://www.politifact.com/
https://www.factcheck.org/

1.1. Problem description and goals

from political debates and interviews. Because human claim verification is laborious,
time-consuming, and mentally demanding, its full or partial automation would provide
significant benefits and expand the possibilities of its use, such as verifying claim in real-
time political debates. However, due to the complexity of this task, in the present it is
rather a distant goal. A broader introduction to automated fact-checking is presented
in [Thorne et al., 2018a].

We defined the fact-checking task as in the [Thorne et al., 2018b]. Verification of text
claims against the knowledge base, where the knowledge base consists of text sources. The
fact-checking pipeline according to the above definition is schematized in Figure 1.2 and
it can be decomposed into several sub-problems. The first step is to find relevant docu-
ments from the collection for the given claim (document retrieval). From these relevant
documents, the sentences from which the evidence is formed are then selected. Finally,
the veracity of the claim is classified on the basis of formed evidence (Natural Language
Inference task) .

Figure 1.2: Fact-checking Pipeline Scheme

The aim of this thesis is to learn about large-scale document retrieval methods, examine
them and evaluate them in the context of the above fact-checking pipeline. Therefore, in
this thesis I will focus mainly on this part of the pipeline. Furthermore, I will focus more
on neural models in order to explore their potential use in an end-to-end fact-checking
system.

4

1.2. Related work

1.2 Related work

Automatic fact-checking has recently been gaining more and more attention both in pub-
lic space and in academic literature. The creation of large-scale Fact Verification and
Verification (FEVER) dataset [Thorne et al., 2018b] played a significant role in this as
previously published datasets are incomparably smaller. The FEVER dataset defined the
task of fact-checking much closer to real use-case by extending the task to an open domain,
similarly to question-answering (QA) open-domain task in [Chen et al., 2017]. However,
the questions usually contain some kind of clue to help you find the answer. This may
not be the case for the claim whose factuality we want to verify, so finding the necessary
evidence is more challenging.

With the publication of the FEVER dataset, the authors also called for a submissions
in shared task of claim verification using Wikipedia abstracts (first paragraph of each
Wikipedia article containing high-level information) as knowledge database. The majority
of submitted works followed the pipeline designed in the [Thorne et al., 2018b] and re-
garding document retrieval the highest-recall solutions extracted noun phrases or named
entities from the claim and used them as query in Wikipedia search API [Hanselowski
et al., 2018]; [Thorne et al., 2018c]. In 2019, additional tasks were added to improve the
resilience of systems. In the first task added, participants were asked to design a system
that would generate adversarial examples that would be misclassified. In the second added
task, the goal was to use these adversarial examples to create a more resilient system and
improve classification performance. However, in terms of document retrieval, there was
no significant change compared to the previous year [Thorne et al., 2019].

As far as the Czech language is concerned, we are not aware of any Czech dataset or
fact-checking system, except for the dataset presented here [Přibáň et al., 2019].

This thesis is one of several works produced as part of the AI in Journalism project,
which was supported by a Transformation of Journalisms Ethics in the Advent
of Artificial Intelligence (TL02000288)4 grant from the Technology Agency of the
Czech Republic. Other works deal mainly with dataset production and the associated
data annotation phase [Ullrich, 2021]; using hybrid (multi-stage) models for document
retrieval [Dědková, 2021]; and document retrieval models supporting long inputs [Gažo,
2021].

4https://starfos.tacr.cz/cs/project/TL02000288

5

https://starfos.tacr.cz/cs/project/TL02000288

Chapter 2
Background

This chapter briefly introduces the task of document retrieval (DR) and traditional DR
models. Then, it provides a description of recently popular methods combining neural
approach with the traditional approach and end-to-end neural approach with a short in-
troduction into language modelling and transformer architecture that is currently prevalent
in the field of natural language processing (NLP).

2.1 Document Retrieval

Document retrieval task can be defined as the matching of an input query with relevant
documents from a document collection, which are typically a very large (tens or more
millions of documents). Both the input query and documents are more or less structured
textual data, therefore the task is sometimes called text retrieval [Manning, 2008]. The
task of finding a relevant documents is usually completed by ranking them by relevance,
so the highly relevant documents appear at the top of the list. The term document can
be perceived as overloaded here and in fact it can be a collection of documents, article,
paragraph, sentence or even single word depending on the particular case. The whole
process is illustrated in the below scheme (see Figure 2.1).

For the sake of clarity, I might use the term information retrieval (IR) later in this
thesis. The IR is a more general term compared to DR, which is typically categorized as
a branch of IR in the taxonomy and classic problem of IR [Mitra Bhaskar, 2018]. Despite
the above, the two terms have very similar meaning and unless stated otherwise, I will
continue to use them interchangeably in this work.

In the Text Retrieval Conference (TREC) competition [Craswell et al., 2020], they
distinguish retrieval models into three categories:

1. Traditional - if it uses only TF-IDF/BM25 like models;

2. Neural - if it employs some form of neural network based approach, but does not
fall into “Neural using Language Models” category;

3. Neural using Language Models - if it uses large scale pre-trained neural language
models (LM).

In this work, we have adopted this division. Nevertheless, we continue to deal only with
the traditional models and neural models using LM, where the latter is the primary object
of our interest.

6

2.2. Traditional Approach

Figure 2.1: Document Retrieval Scheme

2.2 Traditional Approach

Traditional approaches proceed from an empirically found law called Zipf’s law, which is
commonly used as a model of the distribution of terms in a collection. This law states
that the frequency fi of the ith most common term in a collection is proportional to the
inverse of its rank:

fi ≈
1
i

(2.1)

Figure 2.2: Zipf’s law for Reuters-RCV1. Frequency is plotted as a function of frequency
rank for the terms in the collection. [Manning, 2008]

7

2.2. Traditional Approach

2.2.1 Term Frequency-Inverse Document Frequency (TF-IDF)

TF-IDF is a model (or weighting scheme more precisely) created with a knowledge of the
Zipf’s law. In the field of information retrieval, it can be considered as “evergreen” —
very popular and efficient method, which is implemented in a vast number of systems and
applications as a search mechanism. TF-IDF is based on an underlying assumption that
if terms from a given query are present more often in a document A than in a document
B, then there is a closer relation between the query and document A compared to the
document B (document A should have a higher score). That is represented by the term
frequency (tf) part where a weight is assigned to each term t in a document d according
to its frequency in the document.

However, the words do not provide the same amount of information. Consider a docu-
ment containing frequently the word “bird” and compare it with analogous knowledge only
with a word “the”. Common words that are distributed over numerous documents provide
only poor indication of a document’s content. This introduces the second assumption
represented by the inverse document frequency (idf) part which scales the weight given by
the term-frequency.

idft = log N

dft
(2.2)

where:

N is the total number of documents in a collection

dft is a document frequency of a term t defined as the number of documents in
the collection containing the term t

Both parts can be combined into a single formula expressing the weight of the term t
in a document d.

tf-idft,d = tft,d · idft (2.3)

As stated in [Manning, 2008], mechanics of weighting can be summarized into 4 illustrative
cases

1. term t is assigned highest weight in document d if t occurs many times within a
small number of documents;

2. term t is assigned lower weight in document d if t occurs fewer times, or occurs in
many documents;

3. term t is assigned lowest weight in document d if t occurs in all documents;

4. term t is assigned weight zero in document d if t does not occur in the document
at all.

By computing these weights for all terms per document from a collection, we can get
the indexed collection (see Figure 2.1). Each document d will be represented by a vector
of tf-idf d weights, where each part of the vector corresponds to tf-idf weight of term t from
a dictionary5. The document vector representation will be usually a very long (a lot of
different words in the dictionary) and sparse (typically only a minority of existing words
is used in a text of a given topic; also depends on the length of the text) vector.

5the length of the vector is equal to the number of terms in the dictionary

8

2.2. Traditional Approach

During the retrieval time when it is necessary to search for relevant documents given
a query q, the query is converted into bag of words (BOW) vector representation (see Fig-
ure 2.3). And since such a representation will have the same dimension as the representa-
tions of documents in the collection, score for query-document pair expressing the degree
of relevance between them can be obtained by a simple dot-product. It is obvious that
longer questions will reach a higher score due to the higher number of words, therefore
both the document and query vectors are length-normalized (see equation 2.4). [Manning,
2008]

sim(q, d) = Vq · Vd

|Vq| · |Vd|
(2.4)

where:

|| · || stands for the Euclidean norm

The BOW representation is one of the sparse representations because it usually has
the vast majority of values equal to zero. In this case, both the query and the docu-
ment are represented using BOW, which has some implications. The key simplification
of this approach is that it does not include word order information or semantics informa-
tion. To illustrate that, TF-IDF document representation of the document “Achilles is
quicker than tortoise” is equal to the document representation of “Tortoise is quicker than
Achilles” (see Figure 2.3). Even though the documents have an opposite meaning, they
are considered identical by having the identical document representation. [Manning, 2008]
This can be partially suppressed by using n-gram instead of individual words, which adds
some semantic information.

Figure 2.3: Bag of words representation. Dictionary is formed by words Achilles, is, . . . ,
zzz.

2.2.2 Best Match 25 (BM25)

There is a more complex term weighting scheme called BM25 [Robertson et al., 2009] or
Okapi weighting, which is expected to provide better results in practise. This approach
proceeds from probabilistic information retrieval theory, but at the same time there is
a strong resemblance to TF-IDF. The relevance of the document d to the query q is
expressed as

BM25q,d = log idft ·
(k1 + 1)tft,d

k1((1− b) + b · (Ld/Lavg)) + tft,d
·

(k3 + 1)tft,q
k3 + tft,q

. (2.5)

The BM25 can be broken up into 3 terms. The first term is the inverse document
frequency which approximates the missing user-generated relevancy judgments. In case

9

2.2. Traditional Approach

relevancy judgements are available, the following full form (equation 2.6) can be used [Man-
ning, 2008]

log (|VRt|+ 0.5)/(|VNRt|+ 0.5)
(dft − |VRt|+ 0.5)/(N − dft − |VR|+ |VRt|+ 0.5) (2.6)

where:

|VRt| stands for the set of relevant documents to term t

|VNRt| is the set of non-relevant documents to term t according to user feedback

The second term represents the document term frequency and document length scaling.
Document term frequency builds on the assumption of the term frequency from TF-IDF.
BM25 compared to TF-IDF does not assume that a document A containing 2,000 times
relevant term t is 2×more relevant than a document B, which contains only 1,000 times the
same term t. But the effect decreases rapidly after reaching a certain level of saturation.
This level of saturation can be regulated by the positive tuning parameter k1.

Figure 2.4: Term frequency of TF-IDF vs. term frequency of BM25. Adopted from [Turn-
bull, 2015]

In the TF-IDF weighting scheme document length is not directly involved, but in the
case of BM25 it does not apply. The assumption is that if a term is observed in a short
document then it has a bigger impact on the result than it would have in a longer document.
Intuitively, assuming a single-word query “corruption” there is a higher chance that a short
article is more relevant than an entire book if both documents contain the same number of
that word. Size of the effect is calculated as a proportion of document length to an average
length of all documents in the collection. The effect on the whole part is calibrated by a
tuning parameter b ranging from 0 (ignoring document length) to 1 (full influence of the
document length).

10

2.3. Language Modelling

Figure 2.5: Document length in BM25. Adopted from [Turnbull, 2015]

The third term scales the term frequency in the query. It has the analogical form as
the document term frequency. Since queries are usually much shorter than documents,
a simplified formula can be used. However, if the query is longer, such as a full para-
graph, it may be more appropriate to use the full formula as in the second part of the
equation 2.5. [Manning, 2008]

Further in the thesis I will refer to the models described in this section as TF-IDF-like
models, as they are in principle very similar.

2.3 Language Modelling

A language model (LM) is a general name for statistical models which are able to predict
the probability of a next word given some text input, simply put. More formally, it can
be described as a probability distribution over sequences of tokens. Then the probability
of a sequence t can be expressed as a product of conditional probabilities

p(t) =
n∏

i=1
p(ti|t1, . . . , ti−1) (2.7)

Depending on the definition of the token, LM can be of different types. In case the token is
a word, then the LM is called an unigram model and the probability of each word depends
only on its own probability in the document or corpus

p(t) =
n∏

i=1
p(ti) (2.8)

Generally, tokens can be modelled as n-grams (see equation 2.7), then the mechanics of
using them in the model can differ, which leads to other types of LM’s.

In information retrieval context, the LM’s are used for some time already. The use
is based on the idea that a document is relevant to a query if the LM of the particular
document is likely to generate the query, which happens in the case if the document con-
tains the query words often. [Manning, 2008] One can notice a clear relation to traditional
TF-IDF approaches in the idea.

11

2.3. Language Modelling

Figure 2.6: Transfer learning. Adapted from [Ruder, 2021]

Even though the LM’s can be used “directly” for document retrieval (see query likeli-
hood model in [Manning, 2008] for example), their use went in another direction recently.
In that direction, which is characteristic of the whole NLP field, LM’s are primarily used
for generating a rich contextual representation of texts that are consequently used as in-
put features for other task-specific models, which are further trained (finetuned). [Ruder,
2021] This transfer learning based approach both enables to utilize huge and expensive
to train LM’s and significantly improve the state-of-the-art on various downstream tasks.
This paradigm has also been established in the field of information retrieval, and recent
work suggests that even here this approach can outperform traditional baselines. [Craswell
et al., 2020]; [Lee et al., 2019]; [Karpukhin et al., 2020]. In the vast majority of cases, LM’s
are currently implemented using Transformer architecture and trained on a huge amount
of data (see section 2.3.1).

2.3.1 One Model to Rule Them All!

Since 2017, the NLP world is dominated by a family of models called Transformers. They
were firstly introduced in [Vaswani et al., 2017] and later become widely popular with
their variations as BERT [Devlin et al., 2018] or GPT-2 [Radford et al., 2019]. There exist
an overwhelming number of more or less different variants, which implementations can be
found in Hugging Face’s library called Transformers. [Wolf et al., 2020]

Transformer models got very rapidly adopted and applied to a diverse spectrum of
tasks. From machine translation, question answering and document retrieval to non-NLP
tasks as well. Transformers enable to model sequences — often called sequence-to-sequence
models — and due to better parallelization offers faster processing compared to previously
very frequently used recurrent neural networks (RNN).

The transformer architecture is composed of an encoder and a decoder unit (see Fig-
ure 2.7). Both units contain 6 repeatedly stacked identical layers. Each layer consists of
a self-attention layer followed by a normalization layer and a fully connected feed-forward
layer with a normalization layer. For both sub-layers there is a residual connection present.

In addition to the encoder, the decoder contains a third sub-layer, which performs
multi-head attention over the output from the encoder stack. Self-attention layers of the
decoder are modified, so they have access to only already decoded positions (prediction for
position i can depend only on the known outputs at positions less than i). This masking
is crucial as it keeps the model auto-regressive (with leftward information flow) in all
steps. Therefore, every prediction at a position i depends only on the known outputs from
positions before i.

12

2.3. Language Modelling

Figure 2.7: Transformer architecture. Encoder on the left and decoder on the
right. [Vaswani et al., 2017]

2.3.1.1 Attention Mechanism

The very core of the transformer is an attention mechanism. Self-attention of a word in
an input sentence provides its relation to all the other words in the input sentence as it is
depicted in Figure 2.8.

Figure 2.8: Illustrated attention mechanism. [Alammar, 2018]

13

2.3. Language Modelling

Self-attention works with 3 matrices: query Q, key K and value V which represent
certain abstractions. These matrices are obtained by projecting each word, respectively
its word embedding, using trained weight matrices for each particular abstraction. The
self-attention of a word is computed by multiplying its corresponding query vector from
Q and the key vector from K. This is normalized by dividing it by the square root of
the dimension of the key vector and passing it through the softmax. Multiplying this
softmax score with each value vector from V and summing them results in the scaled
dot-product attention.

Instead of performing this scaled dot-product attention once, the multi-head at-
tention mechanism calculates the scaled dot-product attention multiple times in parallel.
This is done by creating a multiple of different Q, K and V matrices with different learned
linear projections. That will produce multiple different output attentions, which are con-
catenated and projected to the final output dimension.

Figure 2.9: Scaled Dot-Product Attention and Multi-Head Attention [Vaswani et al., 2017]

2.3.1.2 Positional Encoding

Since the transformer model does not process words in a sentence sequentially, but in
parallel (all at once), it loses information about order. This is solved by the positional
encoding, which provides a sense of position or order for each word. The positional
encoding is a d-dimensional vector with the same dimension as has word embedding and
components computed by the following rule

PEpos,2i = sin(pos

10 000 2i
d

)

PEpos,2i+1 = cos(pos

10 000 2i
d

)
(2.9)

where:

pos is the desired position in the input sentence

d is the encoding dimension, which must be divisible by 2

i is the dimension. Each dimension of the PE vector corresponds to a sinusoid
and the wavelengths form a geometric progression from 2π to 10 000 · 2π

14

2.3. Language Modelling

The positional encoding vector is then summed with a word embedding which explains
the choice of dimension of PE vector. [Vaswani et al., 2017]

PEpos =

sin(ω1)
cos(ω1)

...
sin(ωd/2)
cos(ωd/2)

where ωj = 1

10 0002j/d .

2.3.2 BERTology

Bidirectional Encoder Representations from Transformers (BERT) presented in [Devlin
et al., 2018] was designed to pretrain deep bidirectional representations from unlabeled
data. These representations are obtained by implementing bidirectional self-attention
that computes both with left and right context in all layers. This fundamental difference
from unidirectional (left to right) models makes better use of pre-trained representations
especially in approaches involving fine-tuning, they argue in the paper.

Figure 2.10: Overall pre-training and fine-tuning procedures for BERT. Apart from output
layers, the same architectures are used in both pre-training and fine-tuning. The same pre-
trained model parameters are used to initialize models for different down-stream tasks.
During fine-tuning, all parameters are fine-tuned. [CLS] is a special symbol added in
front of every input example, and [SEP] is a special separator token (e.g. separating
questions/answers). [Devlin et al., 2018]

BERT workflow consists of two steps: pre-trained on unlabeled data over different pre-
training tasks and fine-tuning on downstream task (e.g. question answering or name entity
recognition) using labeled data. So at the end, there was a fine-tuned model variation for
each of the downstream task. The pre-training step is performed indirectly by using two
pre-training tasks. The first is masked language model (MLM), which randomly
masks some of the tokens from the input and model tries to predict the original words
in masked places based only on its context. The second is next sentence prediction
(NSP), where the task is to classify whether a two given sentences are neighbors or
not. [Devlin et al., 2018]

15

2.3. Language Modelling

The model architecture is a multi-layer bidirectional Transformer encoder based on
the original Transformer implementation [Vaswani et al., 2017]. A benefit of this model is
its unified architecture that differs minimally between pre-training and fine-tuning setup.

This model is so popular and widely used that it has led to the creation of a meta-study
aptly named Bertology, which provides an overview of the accumulated knowledge about
BERT. [Rogers et al., 2020]

2.3.3 As many languages you know, as many times you are a language
model

When working with text data, using various NLP techniques and especially expensive to
train language models, one can notice a big disproportion. Only a very small number of
languages have available data and thus pre-trained language models. Even in the small
cluster of languages having the richest language resources, there is a clear gap between
English and the rest of them (see Figure 2.11). Despite the data scarcity problem does
not have an easy solution yet, there are some interesting research results that can help
to reduce the impact of the gap. Training multilingual and cross-lingual models provide
some of them.

Figure 2.11: Language Resource Distribution: The size of the gradient circle represents
the number of languages in the class. The color spectrum VIBGYOR, represents the total
speaker population size from low to high. Bounding curves used to demonstrate covered
points by that language class. [Joshi et al., 2020]

Pre-training of LM is performed indirectly by using pre-training tasks. In addition
to the above MLM and NSP, there exists other pre-training tasks for example causal
language modelling (CLM), which models the probability of a word given previous
words in a sentence. Usually, there is no need for labelled data in the pre-training tasks
as they have an unsupervised nature. This becomes a great benefit given the fact that
only a minority of existing text data is labelled and that LM needs a substantial amount
of data for pre-training.

The process of pre-training multilingual LM is very similar as for pre-training mono-
lingual LM’s. The primary and obvious difference is that multilingual ones are trained

16

2.3. Language Modelling

with data of multiple languages with the goal to learn a coexisting vector-space represen-
tations for them. It was shown that low-resource language often benefits from training
together with a higher-resource language, especially when it shares a significant fraction
of its vocabulary. [Lample et al., 2019] In addition to universal pre-training tasks, there
exist also tasks specific to multilingual setup. For example, in [Lample et al., 2019] they
presented translation language modelling (TLM) task, which utilizes parallel data
resulting in strong cross-lingual features provided by the model.

The choice of pre-training tasks can significantly affect the model, its vector space and
thus the provided representations, especially in the multilingual setup. The term cross-
linguality refers to the property of the model to create general text representations across
languages. Simply put, given two semantically very similar words in different languages,
the model should provide representations which are also very close.

Monolingual models are in most cases superior in performance compared to multilin-
gual models. [Martin et al., 2020]; [Dumitrescu et al., 2020] Nevertheless, XLM-RoBERTa
(XLM-R) proposed in [Conneau et al., 2020] is a multilingual model trained on a very
large scale regarding the data (2.5 TB) as well as the number of languages (one hundred).
It also showed that a multilingual model can be competitive with a monolingual ones on
some tasks while providing solid cross-lingual features. The performance is quite surpris-
ing as the model was trained only on unsupervised data using MLM without an explicit
training signal providing information about the language of a given text such as parallel
data provides. Further findings shows that if you train a large enough network on a large
enough amount of data, you can get equivalent performance to a monolingual model, while
being able to develop model that can do well on multiple languages at once. [Li et al.,
2021]

Considering Czech language, XLM-R’s Czech reading comprehension was examined
in [Macková et al., 2020], where the XLM-R showed competitive performance compared to
monolingual models even without training on parallel data. And a very recently released
monolingual Czech model Czert [Sido et al., 2021], which in most tasks surpasses the
performance of multilingual models, but unfortunately the comparison with XLM-R is
missing.

2.3.4 Distillation

In recent years, there has been a trend towards increasing language models, which pro-
duced 8.3 billion parameters Megatron LM [Shoeybi et al., 2019] and currently the biggest
175 billion parameters GPT-3 [Brown et al., 2020]. They provide significant improvements
in various NLP tasks — the latter was not even made public in its full scale due to safety-
related concerns — but for a very high price. [Schwartz et al., 2020] The substantial size of
these models also makes them slower and less convenient due to a high computational and
memory requirements. This can significantly reduce the possibility of their deployment,
particularly in document retrieval, where the run time is expected to be near real-time.

17

2.3. Language Modelling

Figure 2.12: Models compared by a number of parameters (currently the biggest model
GPT-3 with a significant margin is not included). [Rosset, 2020]

Recent results showed that it is possible to reach a very similar performance on many
downstream tasks using much smaller LM pre-trained with knowledge distillation tech-
nique. [Sanh et al., 2019] Knowledge distillation is a compression technique presented
in [Buciluundefined et al., 2006] and later applied to neural networks in [Hinton et al.,
2015]. This technique is based on an elegant idea where the smaller (distilled) model
(student) is trained to reproduce the behavior of a larger model (teacher) or an ensemble
of models.

In the case of BERT, the distilled version is created by lowering the number of layers,
removing token-type embeddings and poolers, while the general architecture is preserved.
An important step is the initialization, which affects the speed of convergence of the
student model. Due to the common dimensionality, the student model is initialized by the
teacher model weights, which provides fast convergence. [Sanh et al., 2019]

Another interesting applications of distillation are proposed in [Hofstätter et al., 2020],
where they use cross-architecture knowledge distillation to improve the effectiveness of
the neural passage ranking models with efficient query latency; or in [Reimers et al.,
2020], in which distillation is used for transforming monolingual sentence embeddings into
multilingual by aligning vector spaces between languages.

2.3.5 Tokenization

In NLP, tokenization is a process of splitting a text into smaller units called tokens. A
token can be a word, subword, or character. The key motivation is to have a finite set of
symbols (vocabulary) which parts can be combined to get the desired result. Simple to
describe, yet in practice it is a more complicated problem.

There is a tradeoff between the size of the vocabulary affecting the computational com-
plexity and performance of the model. Having tokens on the level of characters will result
in a small memory footprint as there is a relatively small number of existing characters,

18

2.3. Language Modelling

but it will be very tricky to learn a general representation of a single character. That can
result in lower performance of the model. On the other hand, having tokens on the level
of words will increase the memory footprint and thus also the computational complexity
(consider different endings for a single word stem), but it will be much easier to learn the
representation of a whole word, which will have a positive effect on the performance of
the model.

Good tradeoff provides subword tokenizers, which keep a reasonable vocabulary size
while learning a meaningful context-independent representation is enabled. One of such
tokenizers is the algorithm called WordPiece, which is used for BERT transformer model.
WordPiece initializes the vocabulary with every character present in the training text and
it gradually learns a given number of merge rules (see Algorithm 1).

Algorithm 1 WordPiece Algorithm [Schuster et al., 2012]
Initialize: Initialize the vocabulary with all the characters present in the training text.
Step1: Build a language model on the training data using the vocabulary from the pre-
vious step.
Step2: Generate a new subword unit (wordpiece) by combining two units out of the cur-
rent vocabulary to increment the vocabulary by one. Choose the new subword unit out
of all the possible ones that increases the likelihood on the training data the most when
added to the model.
Step3: Go to Step2 until a predefined limit of subword units is reached or the likelihood
increase falls below a certain threshold.

Similarly to WordPiece, Byte Pair Encoding (BPE) tokenizer also gradually learns
a given number of merge rules, but in a different way. [Sennrich et al., 2016] BPE tokenizer
assumes the data are already splitted into words. Having words represented as a sequence
of characters, the vocabulary is initialized in the same way as for the WordPiece algorithm.
BPE then iteratively counts all subword pairs and replace each occurrence of the most
frequent pair (e.g. “A”, “L”) with a new symbol “AL”. Frequent subwords or even whole
words are eventually merged into a single token. The final vocabulary size is equal to
the number of distinct characters in the training data (the size of initial vocabulary) plus
the number of merge rules, which is the only hyperparameter of the algorithm. One can
see the key difference is in choosing a merge rule step. BPE chooses simply the most
frequent subword pair in the data, compared to the pair maximizing the likelihood chosen
by WordPiece.

Tokenizers stated above assume either the training text is already splitted into words
or it can be relatively easily done by some pre-tokenizer that assumes words are separated
by whitespace. This approach becomes a problematic at the moment we try to tokenize
a language, which does not use whitespace to separate words. A possible solution is
to use pre-tokenizer created for that particular language. More general solution is to
use SentecePiece tokenizer which enables to train subword models directly from raw
sentences by treating whitespace as one of the tokens inside the vocabulary. SentecePiece
implements an optimized BPE [Sennrich et al., 2016] with O(n logn) due to using priority
queue and unigram language model [Kudo, 2018]. Besides that, SentecePiece provides
further functionality — e.g. manages a vocabulary to id mapping to directly convert the
input text into an id sequence; it enables customizable character normalization; it makes
the reproduction of preprocessing steps easy by embedding all the rules and parameters
into self-contained model by design — which makes it end-to-end system that does not
depend on any language-specific processing. Due to that, SentecePiece is a very convenient
tokenizer for multilingual models.

19

2.4. Hybrid Approach

Those tokenizers mentioned above are only a subset of the existing ones. A nice
overview of subword tokenizers as well as their implementation provides HuggingFace
library. [Wolf et al., 2020]

2.4 Hybrid Approach

Another approach to document retrieval is the hybrid approach that combines traditional
methods and language models. With the advent of transformer models, there occurred
many works experimenting with this approach, for example [Nogueira et al., 2019a] or
other works implementing integrated systems such as Bertserini [Yang et al., 2019b] or
Birch [Yilmaz et al., 2019].

The underlying idea behind this approach is to divide the task of DR into two parts
as was presented in [Chen et al., 2017]. In the first part, usually called retriever, is
performed a rough pre-selection of documents using typically faster and more efficient
traditional methods, which allow to realize retrieval in sublinear time using the inverted
index. In the second part, computationally more demanding neural model is used to re-
rank the relatively small number of already pre-selected documents. That part is usually
called the reader (see Figure 2.13).

Figure 2.13: Hybrid Approach Scheme

In general, specific document retrieval pipeline depends on the task and the data we
are working with. Therefore, the pipeline can be of arbitrary complexity and it can have
more steps than only retrieval and re-ranking. In [Diggelmann et al., 2020] their retrieval
pipeline utilizes natural granularity of textual data and consists of three steps:

1. document retrieval using BM25 operating on full-length Wikipedia articles, returning
top d documents;

2. sentence retrieval using pre-trained LM for generating sentence embeddings and
returning top s sentences;

3. sentence re-ranking using the same LM for computing relevance scores of claim-
sentence pairs and providing re-ranked top s sentences

20

2.5. Neural Approach

The BM25/TF-IDF retrievers are very efficient and proven by a wide range of appli-
cations in industry as they provide reasonable trade-off between latency and accuracy.
Their popularity is also evident from the tables with the submitted solutions of the MS
MARCO passage and document ranking tasks6.

However, they have a clear disadvantage as the quality of the retrieved results depends
on the performance of the retriever, which lacks the semantic and contextual understand-
ing, as was described in section 2.2.1. Although there exists techniques, that try to
mitigate the term mismatch error by enriching documents with potential query terms,
presented in [Nogueira et al., 2019c]; [Nogueira et al., 2019b] or replace the BM25’s term
frequency with LM-estimated term importance [Dai et al., 2019], their effects are limited.
End-to-end neural retrieval that provides deeply-contextualized semantic representations
of queries and documents bridging the widespread problem of vocabulary mismatch can
offer a better solution.

2.5 Neural Approach

With the successful application of neural models in combination with traditional models,
the research community focused on the end-to-end neural retrieval, also referred to in the
literature as dense retrieval. Their efforts crystallized into several different paradigms (see
Figure 2.14).

Figure 2.14: Schematic diagrams illustrating query–document matching paradigms in neu-
ral IR. [Khattab et al., 2020]

2.5.1 Cross-Attention Paradigm

This paradigm enables to model interactions between words within as well as across a query
and document at the same time, see Figure (c) in 2.14. This is realized by concatenating
the query with the document separated by some special token and inputting them into
the transformer model. A linear layer or multilayer perceptron can be appended to the
transformer predicting the relevancy score between the query and document or binary
relevant/non-relevant output signalizing whether the document is relevant to the query.

This interaction-based paradigm tends to be more effective compared to two-tower
paradigm from section 2.5.2 as it might be very hard to represent a single document
by a single low-dimensional vector, especially when the document is long and contains a
mixture of different topics. [Mitra Bhaskar, 2018]

On the other hand, it would be impossible for the model to work with reasonable
latency, especially in the case of large collections of documents (tens of millions of doc-

6https://microsoft.github.io/msmarco/

21

https://microsoft.github.io/msmarco/

2.5. Neural Approach

uments) and quadratic computational complexity (attention mechanism). Therefore, its
application in early document retrieval stage is not particularly suitable.

2.5.2 Two-Tower Paradigm

Two-tower paradigm, how is it called in [Chang et al., 2020] (further it can be found under
siamese-network or representation-based approach names in the literature), is illustrated
in Figure 2.14 (a). In this paradigm, the embeddings for a query and for documents
are independently computed and then estimates of the relevance between the query and
each document are calculated using some similarity / distance metric or dot-product.
The embeddings can be computed either by the same or different language models. This
separation of query branch and document branch enables to use dense retrieval in end-to-
end fashion as the collection of documents can be pre-computed into embeddings offline,
which comes as a great latency-related benefit during runtime.

Figure 2.15: SBERT architecture variants. Left: classification objective function (soft-
max) and concatenation head (concatenating embeddings of both sentences and their
element-wise difference resulting in R3n, where n is the dimension of the sentence embed-
ding). Right: regression objective function (MSE) and cosine similarity as head. [Reimers
et al., 2019]

Line of works motivated by the finding that sentence-level embeddings perform better
when using transfer learning for downstream tasks than word-level embeddings [Cer et al.,
2018] use this paradigm for training Sentence-BERT (SBERT) [Reimers et al., 2019] model
or TwinBERT [Lu et al., 2020], which are dealing with the semantic search task. Their
approach is to add a pooling layer to the BERT-like transformer, that generates fixed
size embeddings. The pooling layer encodes sentence tokens from the input, over which it
computes mean or maximum operation resulting in the sentence embedding. The network
head and thus the final output together with the loss function depend on the available
training data, examples of such architectures are shown in the Figure 2.15.

Besides these examples, you can also use the triplet objective function, where the
triples (query sentence, positive sentence, negative sentence) are given. The network is
tuned by the triplet loss (see equation 2.10) such that the distance between the query and
positive sentence is smaller than between the query and negative sentence. This approach
provides a certain flexibility as the relevance between the query and a sentence does not

22

2.5. Neural Approach

necessarily be semantic, but for example thematic. [Ein Dor et al., 2018]

max(||sq − sp|| − ||sq − sn||+ ε, 0) (2.10)

where:

|| · || is Euclidean norm

ε is margin

Figure 2.16: Example of the ICT, BFS, WLP pre-training tasks. Each randomly chosen
sentence is denoted as a query and its corresponding paragraph (positive example) is
denoted as d. ICT is defined within a paragraph (q1); BFS is defined globally within an
article (q2) and WLP is defined by hyperlinking a two Wikipedia articles through some
entity (q3). [Chang et al., 2020]

LM’s are usually pre-trained on MLM task or some similar task (see sections 2.3.3 and 2.3.2),
which helps LM’s to get general language comprehension, but this may not necessarily be
sufficient for retrieval task. There are some works emphasizing the importance of further
LM pre-training prior to application to downstream tasks to improve retrieval capabilities.
In [Chang et al., 2020], they propose to further pre-train the LM on these paragraph-level
retrieval relevant tasks:

1. Inverse Cloze Task (ICT) It was originally proposed in [Lee et al., 2019], where
the task is supposed to capture the semantic context of a sentence. ICT randomly
extracts a sentence from a passage p and then tries to predict from what passage it
comes (see Figure 2.17).

2. Body First Selection (BFS) It is supposed to capture semantic relationship out-
side of the local passage. BFS chooses a random sentence from the first summary
paragraph of Wikipedia page (since it contains information central to the topic) and
tries to classify a passage from the same document.

3. Wiki Link Prediction (WLP) This task is proposed to capture inter-page se-
mantic relation. It chooses a random sentence from the first summary paragraph of
Wikipedia page and tries to classify a corresponding section from a linked page.

23

2.5. Neural Approach

Figure 2.17: ICT example used for retrieval pre-training. A random sentence (pseudo-
query) and its context (pseudo evidence text) are derived from the text snippet: “...Zebras
have four gaits: walk, trot, canter and gallop. They are generally slower than horses,
but their great stamina helps them outrun predators. When chased, a zebra will
zig-zag from side to side...” The objective is to select the true context among candidates in
the batch. [Lee et al., 2019]

In this way, the further pre-trained transfomer model serves as method for converting
queries and documents into common embeddings space. In the inference phase, relevant
documents for a query are retrieved using nearest neighbors search (or its approximation
for higher efficiency). In addition to the ability to capture deeper semantic relationships
between query and documents, another advantage over traditional sparse-representation
based approaches is the ability to optimize models for a given task. [Chang et al., 2020] For
completeness, there are also optimized and high-performing applications without involving
any further pre-training step. [Ding et al., 2020]

2.5.3 Late Interaction Paradigm

Late interaction paradigm (see Figure 2.14 (d)) was presented in [Khattab et al., 2020]
and it tries to combine the benefits of the two previous paradigms. It enables fine-grained
interaction of query and documents like the cross-attention setup, while the document
representations can be precomputed offline.

It encodes each term of a query using BERT-based encoder into a bag of embeddings
Eq. Similarly, it is done for each term of each document, which provides bag of fixed-
sized embeddings Ed. Term refers to WordPiece token [Schuster et al., 2012]. Using
those two bags of embeddings, the relevance score between q and d is computed as the
sum of the maximum similarity between query term embeddings and document term
embeddings. Particularly, for each term embedding from Eq is calculated similarity with
all term embeddings from Ed, and only the highest (max) similarity is kept. By summing
those maximum similarities for each query term, we get the desired relevance score between

24

2.5. Neural Approach

q and d.
Instead of the maximum similarity operation, it is possible to use average similarity,

or others. However, in the ColBERT paper [Khattab et al., 2020] they strongly argue for
the use of the maximum similarity operator due to its pruning-friendly nature, which is
leveraged later in the retrieval process.

ColBERT model enables to re-rank already retrieved top-k documents or perform end-
to-end top-k retrieval itself. Since the late interaction mechanism is specifically designed
to enable end-to-end retrieval from a large collection with the goal to improve recall, it
is the expected modus operandi. The retrieval utilizes a fast large-scale vector-similarity
search from the FAISS [Johnson et al., 2019] library, which makes it possible to conduct
the search between the query embedding and all document embeddings across the full
collection efficiently.

When processing queries, the retrieval procedure consists of two parts to retrieve top-k
most relevant documents from the collection. First, for each query term embedding from
Eq is retrieved top-k’ matches for that vector over all document embeddings. Each of
those matched document term embeddings is then mapped to its document origin, which
results in Nq × k′ document IDs (Nq = number of tokens in the query), while only K
≤ Nq × k′ of which are unique. These K documents probably contain one or more very
similar embeddings to some query term embeddings. Efficiency of this step is ensured by
the IVPF index from the FAISS library, which divides the indexing space into P partitions
based on k-means clustering algorithm, so the document embeddings are mapped to their
nearest clusters subsequently. This makes it possible to avoid a direct exhaustive search
over all documents in the collection, by scoring only the documents from the nearest C
clusters.

In the second step, only a relatively small number of documents K retrieved in the first
step are exhaustively scored. Each document is represented by a matrix of embeddings
(#tokens × embedding dimension), which results in 3-dimensional tensor. The score of
each document for a query q is then calculated using the max-sim operator and summation
over all query terms, a more detailed description can be found in the [Khattab et al., 2020].
At the end, the documents are ranked according to their score. The obvious advantage over
the cross-attention approach is that it is not necessary to calculate a relatively expensive
attention for query q and each document d (Nq + Nd tokens), but only for the query q
(Nq tokens).

2.5.4 FAISS

Since both neural approaches (see 2.5.2 and 2.5.3), we experimented with, use methods
from the FAISS library [Johnson et al., 2019], we will give a few words about it. FAISS
is a library for efficient similarity search and clustering of dense vectors, developed by
Facebook AI Research. It provides algorithms for search in sets of vectors of any size.
It is highly optimized, which makes it fast and allows working with vectors that do not
fit in RAM. It also contains supporting code for evaluation and parameter tuning. The
library is written in C++ with optional GPU support provided via CUDA. It also provides
complete wrappers for Python/numpy.

FAISS contains several methods for similarity search and very efficient implementa-
tion of k-means clustering, PCA and product quantization. It works with instances rep-
resented as vectors, that can be compared with L2 (Euclidean) distance, dot product or
cosine similarity7. The library offers several indexing structures ranging from direct ones

7which is a dot product on normalized vectors

25

2.5. Neural Approach

that provide exact search to ones that involve some trade-off between search time, search
quality, memory used per index, training time or need for external data for unsupervised
training.

To give you an idea, some of the potential adjustments to the index are as follows.
Faster search is possible by segmenting the database into Voronoi cells. At the search time,
only the database vectors contained in the cell the query falls in and a few neighboring ones
are compared against the query vector. Lowering memory footprint of an index is enabled
by PCA or product quantization that will reduce the dimension to a configurable number.
This will make possible to scale up even to very large datasets (billions of vectors).

2.5.5 Long, Longer, Longest

Along with the significant increase in the use of BERT-like transformers, its limits also
became more apparent. One of them is a limited number of tokens at the input of the model
as BERT operates with a maximum sequence length equal to 512 tokens. This is caused
by an expensive self-attention mechanism. While powerful in performance, self-attention
memory and computational requirements grow quadratically with sequence length, making
it very costly or even infeasible to process long sequences using current hardware. Over
the last two years, a number of works have appeared that address these limits and modify
the attention mechanism. As this area of research opens up the possibility of working with
long texts at the level of entire documents, we present a summary of it, as it can also have
an effect on DR.

The Longformer paper [Beltagy et al., 2020] suggests to replace expensive self-attention
with a combination of cheaper attention patterns (see Figure 2.18). Specifically it uses
local sliding window attention, dilated attention and global attention, which makes the
Longformer to scale linearly with the input sequence length. They also propose a clever
initialization scheme, that copies RoBERTa weights and absolute position embeddings
into a Longformer version of RoBERTa with 8 times higher capacity supporting sequences
of up to 4096 tokens in length. Using that simple yet effective idea makes the model
pretraining to very quickly converge with a small number of gradient updates.

Figure 2.18: Comparing the full self-attention pattern and the configuration of attention
patterns used in Longformer. [Beltagy et al., 2020]

Another group of methods seeks to make the attention mechanism more efficient by
approximating the full attention matrix with a lower rank matrix with size independent
of the input length. The argument for this approach is based on the key observation that
the self-attention is low rank. [Wang et al., 2020] In other words, attention weights are
dominated by a mere minority of key entries rather than being diffuse over the whole
sequence. By performing spectral analysis, they showed that 90% of the variation is
explained by only the first 128 of 512 eigenvalues obtained by SVD.

26

2.5. Neural Approach

Figure 2.19: Left and bottom-right show architecture and example of the proposed multi-
head linear self-attention. Top right shows inference time vs. sequence length for various
Linformer models. [Wang et al., 2020]

Linformer model [Wang et al., 2020] adds two linear projection matrices to the original
self-attention (see the left part of the Figure 2.19). First, they project the original (n×d)-
dimensional key (KWW) and value (VWV) layers into (k × d)-dimensional projected key
and value layers. Then those two matrices are multiplied together to produce a (n × k)-
dimensional agreement matrix. Finally, multiplication of this agreement matrix (n, k) with
the down-projected value matrix (k, d) will results in (n× d)-dimensional just like in the
original self-attention. By choosing a very small projected dimension k, such that k � n,
makes the memory and space requirements significantly reduced. Computationally-wise,
both computational and space complexity is linear with the respect to the sequence length
n (see the right side of the Figure 2.19).

In addition to the above mentioned methods, there are a number of others using more
or less different approaches, for example in the Routing transformer [Roy et al., 2021] they
decided to tackle this problem by k-means clustering. A nice overview capturing the devel-
opment in this “making transformers more efficient” research direction and summarizing
majority of the relevant work is provided in this survey [Madison, 2020].

27

Chapter 3
Datasets

This chapter describes the datasets used in the experiments and work related to the
measuring of the quality of constructed claims.

3.1 FEVER CS

The original FEVER dataset is presented in [Thorne et al., 2018b] containing ≈ 185,000
claims based on ≈ 50,000 popular Wikipedia articles. Each claim is annotated as either
SUPPORTS, REFUTES or NOT ENOUGH INFO. In case the claim is verifiable — annotated as
SUPPORTS or REFUTES — there is also provided evidence on which is the annotation based.
Evidence consists of single or multiple documents and even particular sentences which
contain evidence.

Split SUPPORTS REFUTES NEI
train 53,542 18,149 35,639
dev 3,333 3,333 3,333
test 3,333 3,333 3,333

Table 3.1: Label distribution in FEVER CS dataset (with forced label uniformity in the
validation sets to remove advantage for heavily biased predictors)

The dataset was created in two stages. Firstly, the claims were generated using only the
first paragraph (abstract8) of a randomly sampled Wikipedia article. The annotators were
asked to create claims about some of the article’s entities. In order to create more complex
claims, the annotators had the option to use hyperlinked articles to include information
from them. In the second stage, the annotators were asked to label the claim using one
of the three mentioned labels. In case they choose either SUPPORTS or REFUTES label they
need to select the evidence paragraph for their decision.

Original English claims were translated into Czech using Google Cloud Translate API.
Since Wikipedia has Czech mutation, we used Czech Wikipedia dump9, processed it us-
ing WikiExtractor library [Attardi, 2019] and kept only the abstract paragraphs. After
this processing, the article database had about 453,500 articles. Notice that in this case
the document, article and paragraph are identical. We used the training/development

8this paragraph contains general information relevant to the whole article
9available from https://dumps.wikimedia.org/

28

https://dumps.wikimedia.org/

3.2. ČTK

split available on FEVER website10. A more detailed description of the creation of the
FEVER CS dataset is given here. [Ullrich, 2021]

ID: 24173
Verifiable: VERIFIABLE
Claim: Mlčeńı jehňátek je náboženstv́ı.
Evidence: Mlčeńı jehňátek (v originále The Silence of the Lambs) je americký

thriller, který rež́ıroval Jonathan Demme. Hlavńımi herci filmu jsou Jodie
Fosterová, Anthony Hopkins, Scott Glenn, Anthony Heald, Ted Levine a
Frankie Faison. Film měl premiéru ve Spojených státech 14. února 1991.
Scénář je napsán podle stejnojmenného románu Thomase Harrise. Film
źıskal celkově pět Oscar̊u - nejlepš́ı film, nejlepš́ı režie, nejlepš́ı herec v hlavńı
roli, nejlepš́ı herečka v hlavńı roli a nejlepš́ı adaptovaný scénář.

Verdict: Refuted

Figure 3.1: FEVER CS data example

3.2 ČTK

Inspired by [Thorne et al., 2018b] and [Binau et al., 2020], we started creating a Czech
version of Fact-Extraction and Verification dataset11. We used vast database of articles
provided by the Czech News Agency12 instead of the Wikipedia as the knowledge database.
The Czech News Agency produces and also provides news articles, which are taken over by
the media, public institutions and private companies. Because they are news texts, these
articles have a different structure compared to Wikipedia articles as they use different
language style, provide a much broader context and a different order of paragraphs - the
first paragraph does not contain a summary as an article on Wikipedia that contains an
abstract, which was used in the FEVER.

Split SUPPORTS REFUTES NEI
train 1,282 556 555
dev 100 100 100
test 200 200 200

Table 3.2: Label distribution in ČTK dataset (with forced label uniformity in the valida-
tion sets to remove advantage for heavily biased predictors)

The collection process was not fundamentally different from the collection in the
FEVER dataset. Because ČTK articles were not linked by hyper-references of name en-
tities such as Wikipedia, a “dictionary” was provided to annotators enabling them to use
evidence from there as well. This “dictionary” was consisted of the most relevant articles
found using the TF-IDF and pretrained two-tower dense retriever model described in sec-
tion 4.2.2. In cooperation with journalists from the Faculty of Social Sciences of Charles
University, we generated ≈ 3 000 at least once annotated claims. Hence, the following
analysis and results are based on the current snapshot from 05.05.2021 named as v2.1. A
more detailed description of data and data collection is given in [Ullrich, 2021].

10https://fever.ai/resources.html
11data collection platform available at https://fcheck.fel.cvut.cz
12Česká Tisková Kancelář (ČTK)

29

https://fever.ai/resources.html
https://fcheck.fel.cvut.cz

3.3. Data Quality

Articles containing sports results and financial market results, which consisted mainly
of tables of numbers, were first filtered from the ČTK article database. This reduced the
number of articles to about 2,507,500. We worked with the texts at the paragraph level, so
the articles had to be divided into paragraphs then. This step resulted in about 13,619,500
different paragraphs.

ID: 142
Verifiable: VERIFIABLE
Claim: Astrid Lindgrenová neměla žádné děti.
Evidence: Švédská spisovatelka Astrid Lindgrenová (1907-2002) už jako

šestnáctiletá začala pracovat jako elévka v redakci regionálńıch novin. Záhy
se však stala svobodnou matkou a nalezla si ve Stockholmu mı́sto sekretářky.
Protože měla málo peněz, svěřila syna Larse do péče pěstoun̊u v Dánsku.
Roku 1931 se provdala za úředńıka Sturea Lindgrena, od té doby se mohla
věnovat výchově syna a později i dcery Karin.

Verdict: Refuted

Figure 3.2: ČTK v2.1 data example

3.3 Data Quality

In the claim generation phase of both FEVER and ČTK datasets, the annotators are
asked to create variations of an initial claim by rephrasing, substituting part of the claim,
negating or making it more general/specific. These mutations may have a different truth
label than the original claim or even be non-verifiable with the given knowledge database,
which will produce more claims of all annotation labels. During trials in [Thorne et al.,
2018b], they found that a majority of annotators had difficulty with creating non-trivial
negation mutations beyond adding “not” to the original.

In the following work [Derczynski et al., 2020], they investigated the impact of these
trivial negations on the quality of the dataset. To examine the claims in the context of
quality of the dataset, they proposed two quality metrics: dataset-weighted cue information
(DCI) and cue productivity and coverage. These metrics should help to reveal potential
surface-level linguistic patterns that “leak” class information and cause bias in the data.

3.3.1 Dataset-weighted Cue Information (DCI)

DCI is a simple measure based on information theory, which can indicate how much a
pattern contributes to a classification. By calculating entropy (equation 3.1)

H(X) = −
n∑

i=1
P (xi) logP (xi) (3.1)

of class-balanced distribution Nk of cue frequencies for cue k (equation 3.2)

Nk = {|Acue=k ∩Aclass=y|
|Acue=k|

y ∈ Y } (3.2)

where:

Y denotes the set of possible labels {SUPPORTS, REFUTES, NOT ENOUGH INFO}

A is the set of all claims

30

3.3. Data Quality

Acue=k is the set of claims containing cue k

Aclass=y is the set of claims annotated with label y

We get an information-based factor λh expressing the information gain as

λh = 1−H(N) (3.3)

This is further corrected for rareness of cues by involving frequency-based scaling factor
λf , which plays a similar role to the IDF-term in the TF-IDF model.

λf = (|Acue=k|
|A|

)1/s (3.4)

Where s is a scaling factor corresponding to the estimated exponent of the feature’s power
law frequency distribution. In [Derczynski et al., 2020] they suggest using s = 3 for English
and we did the same for Czech.
Finally, multiplying those two factors and taking their squared root will result in the DCI
metric

DCI =
√
λh · λf (3.5)

They propose to use skip-grams as cues (patterns) thanks to the fact that they capture
a sufficient amount of information and also ignore usually rare named entities and rather
focus on the surrounding language. The skip-grams are generalization of n-grams, in which
the words not need to be consecutive, but may leave a gaps which are skipped over. For
example in a short sentence Cash walks the line:

bigrams: Cash walks, walks the, the line;

1-skip-bigrams: Cash walks, Cash the, walks the, walks line, the line;

2-skip-bigrams: Cash walks, Cash the, Cash line, walks the, walks line, the line.

3.3.2 Cue Productivity and Coverage

Cue productivity and coverage metrics proposed in [Niven et al., 2019] are used with
the slightly modified methodology as the structure of both datasets differ. Potential
cues (patterns) are extracted from the data in the form of unigrams and bigrams. The
productivity of a cue (πk) is calculated as the frequency of the most common label across
the claims that contain the cue divided by the total number of claims which contain the
cue irrespective of their label. Based on the definition of productivity, it can range [1

|Y | , 1].

πk =
max
y∈Y
|Acue=k ∩Aclass=y|

|Acue=k|
(3.6)

There is also a proposed metric suitable for comparison between datasets, called utility that
normalizes productivity by a number of distinct labels, which may differ across datasets

ρk = πk −
1
|Y |

(3.7)

The coverage of a cue is defined as

ξk = |Acue=k|
|A|

(3.8)

31

3.3. Data Quality

It should be emphasized that the productivity metric assumes a balanced dataset with
respect to labels. Otherwise, preference would be given to the most frequent label. In [Der-
czynski et al., 2020], they propose the creation of a balanced data set by subsampling the
majority class, which they achieve by creating ten random subsamples. Then the resulting
metrics are obtained by averaging these subsample metrics.

3.3.3 Results

We computed those metrics according to the above described methodology for both
FEVER CS and ČTK datasets. In addition to unigram and bigram cues for the produc-
tivity and coverage metrics, we also tried to use lower-granular worpiece tokens as cues.
Regarding the DCI, we used wordpieces, unigrams and 4-skip-bigrams as cues. Then we
also calculated the harmonic mean of productivity and coverage, which allows us to reflect
the overall effect of the cue on the dataset, because there exist a large number of cues with
maximal possible productivity but minimal effect (for example, a given cue occurs in the
dataset in only one claim, which is consistently labeled will result in πk = 1).

The results confirmed that the original FEVER dataset does indeed contain some cues
that may indicate bias. This was also reflected in the translated FEVER CS, where the
words “neńı” and “pouze” showed high productivity of 0.57 and 0.55 and ended in the first
20 cues sorted by harmonic mean13. However, their impact on the quality of the entire
dataset is limited as their coverage is not high, which is illustrated by their absence in the
top-5 most influential cues (see table 3.3).

According to the harmonic mean, when using wordpiece tokens, the most influential
are “##’”, which is accent at the end of the word token, and “UNK”, which is a special
token that includes any token not found in the dictionary (see table 3.4). Despite the fact
that they provide very little information to the model, they hold a dominant position in
the results due to their high occurrence.

The results on the ČTK dataset are significantly affected by the fact that the number of
claims is quite low. This causes that even specific cues based on the thematic cluster formed
around the original statement have a relatively higher impact on the dataset (for example,
“Bühler Motor” in the table 3.5). Although ČTK also contains some constructs with a
higher productivity, for example “Thomas Alva” (0.69) or “neńı” (0.7), their influence on
the whole dataset is minimal to negligible.

Although the analysis did not confirm any significant bias in the claims, there is still
a need to monitor these metrics in the future as more claims are made. This part is not
directly related to document retrieval, but it is very useful for the last step of the fact-
verification pipeline (see Figure 1.2). In this step, a claim is classified either as true, false,
or unverifiable in the context of the evidence provided. And awareness of the linguistic
patterns that can leak information about the label can help explain the behavior of the
algorithm and better evaluate it. This problem is modeled using a task called Natural
Language Inference (NLI) and is further addressed in the work of [Ullrich, 2021].

13harmonic mean refers to harmonic mean of productivity and coverage

32

3.3. Data Quality

Cue Productivity Utility Coverage Harmonic Mean
Wordpieces

##’ 0.3378 0.0045 0.6659 0.4482
UNK 0.3389 0.0056 0.6321 0.4412
je 0.3455 0.0121 0.2682 0.3020
v 0.3495 0.0162 0.2650 0.3015
##a 0.3485 0.0152 0.1219 0.1806

Unigrams
je 0.3469 0.0136 0.2653 0.3007
v 0.3462 0.0128 0.2115 0.2625
byl 0.3731 0.0397 0.1131 0.1736
se 0.3690 0.0356 0.0986 0.1556
na 0.3604 0.0270 0.0832 0.1351

Bigrams
v roce 0.4591 0.1258 0.0564 0.1004
se narodil 0.4496 0.1162 0.0193 0.0370
ve filmu 0.5163 0.1830 0.0115 0.0224
narodil v 0.4748 0.1415 0.0104 0.0203
je v 0.3443 0.0110 0.0103 0.0200

Table 3.3: Productivity, utility, coverage and harmonic mean of productivity and coverage
calculated on translated FEVER CS dataset claims sorted by the harmonic mean.

Cue DCI
Wordpieces

##’ 0.6914
UNK 0.6846
je 0.5975
v 0.5913
byl 0.5281

Unigrams
je 0.5967
v 0.5686
byl 0.5281
se 0.4991
na 0.4912

4-skip-bigrams
v roce 0.4455
se v 0.4172
byl v 0.4100
je v 0.3980
se narodil 0.3762

Table 3.4: DCI calculated on translated
FEVER CS dataset claims.

Cue DCI
Wordpieces

v 0.6270
z 0.5668
##y 0.5376
##u 0.5361
na 0.5307

Unigrams
v 0.5936
se 0.5282
na 0.5243
a 0.5014
je 0.5012

4-skip-bigrams
v roce 0.4420
se v 0.4181
v v 0.3972
na v 0.3945
Bühler Motor 0.3860

Table 3.5: DCI calculated on ČTK v2.1
dataset claims.

33

3.3. Data Quality

Cue Productivity Utility Coverage Harmonic Mean
Wordpieces

v 0.3505 0.0171 0.3822 0.3656
z 0.3456 0.0123 0.2009 0.2541
##y 0.3508 0.0175 0.1487 0.2088
##u 0.3552 0.0218 0.1466 0.2075
se 0.3521 0.0188 0.1414 0.2017

Unigrams
v 0.3489 0.0156 0.2725 0.3060
se 0.3504 0.0171 0.1401 0.2002
na 0.3485 0.0151 0.1248 0.1838
je 0.3545 0.0212 0.0999 0.1558
V 0.3924 0.0590 0.0968 0.1552

Bigrams
v roce 0.4013 0.0679 0.0398 0.0723
V roce 0.3649 0.0316 0.0166 0.0317
se v 0.3755 0.0422 0.0150 0.0288
v Praze 0.4300 0.0966 0.0139 0.0270
v́ıce než 0.3804 0.0471 0.0122 0.0236

Table 3.6: Productivity, utility, coverage and harmonic mean of productivity and coverage
calculated on ČTK v2.1 dataset claims sorted by the harmonic mean.

34

Chapter 4
Proposed Solutions

This chapter describes proposed solutions, motivation for their choice and methods of their
evaluation.

4.1 Baseline

We originally chose DrQA [Chen et al., 2017] model, more precisely its document retriever
part, as our document retrieval baseline. DrQA was designed for “machine reading at
scale” — combination of large-scale open-domain question answering and machine com-
prehension of text. The system was originally used for answering factoid questions while
using Wikipedia as the knowledge database, which is relatively close to the task being
solved in fact-checking. The DR part itself is based on TF-IDF weighting of BOW vectors
while optimized by using hashing.

Later, inspired by the criticism of choosing weak baselines presented in [Yang et al.,
2019a], we decided to validate our TF-IDF baseline against the proposed Anserini toolkit.
More specifically, we used Python toolkit — Pyserini [Lin et al., 2021] — to do so. Anserini
itself is implemented in Java and built on the indexing and search features providing library
— Lucene, which in combination with a significant optimization makes it very effective.
We used BM25 model from Anserini library and compared the results with DrQA using
the FEVER CS dataset (see section 3.1) and ČTK (see section 3.2). Compared to DrQA,
anserini’s BM25 performance was slightly worse on the FEVER CS test set but higher on
the ČTK test set (see the results in the section 5.4).

4.2 Neural Models

The aim of the work was to investigate neural models in the initial phase of DR and whether
they can outperform very solid traditional baselines, as some recent work suggests. Aware
of future use in the fact-checking pipeline, we were primarily interested in recall and mean
reciprocal rank (MRR) metrics (see section 4.3), which capture the ability of models to
identify relevant documents, which is central in the initial phase of DR. So our second goal
was to come up with a model that would maximize performance on these two metrics. We
did not pay much attention to hybrid neural models precisely because they incorporate
traditional models to retrieve documents in the initial phase.

35

4.2. Neural Models

4.2.1 ColBERT

We replicated this recently published model that should provide the benefits of both cross-
attention and two-tower paradigm under one roof (see 2.5.3) using the implementation
provided by the authors14. We made only minimal changes such as changing the backbone
model to multilingual mBERT and adjusting the special tokens.

The model was trained using triples query; positive paragraph; negative paragraph
with the objective to correctly classify paragraphs using a cross-entropy loss function. We
constructed the training triples such that the claim created by a human annotator was
taken as a query, a paragraph containing evidence as a positive and a random paragraph
from a randomly selected document was used as a negative. This was done for both ČTK
and FEVER CS datasets.

For the ČTK dataset, the number of created claims is significantly lower than for
FEVER CS. Therefore, we further created more ČTK training triples with a similar process
only instead of sampling the negative paragraph from a random document, we sampled
it from the same document containing the positive paragraph (evidence). These negative
paragraphs are called hard negatives. The number of training triples was still quite low,
so we generated also synthetic triples as follows. We extracted a random sentence from a
random paragraph, which we used as a query. The remaining paragraph after extraction
was used as a positive paragraph. The negative paragraph was selected as a random
paragraph from a random document. As a result, we generated about 600,000 triples
(≈ 500, 000 synthetic and ≈ 100, 000 using human-created claims) for the ČTK dataset.

4.2.2 Pre-training mBERT

A significant portion of time and work went to pre-training multilingual mBERT model
in two-tower paradigm. Motivated by findings in [Chang et al., 2020], we tried to apply
this approach to large-scale DR, which is closer to a realistic situation than a relatively
small SQuAD dataset used in the above mentioned work.

In principle, we used the same setup as in [Chang et al., 2020], the multilingual
mBERT [Devlin et al., 2018] with added FC linear layer which consolidated the output
into embedding of the required dimension 512. This model was pre-trained unsupervised
on ICT and BFS tasks. In the case of the FEVER CS dataset, we pre-trained the model on
full-length Wikipedia articles. In the case of the ČTK dataset, the model was pre-trained
on the entire collection of documents (articles) provided by the Czech News Agency. This
was followed by a supervised finetuning phase, where real claim was used as a query,
passage containing evidence for the given claim as positive passage.

ICT pre-training examples were specifically formed by dividing the article into pas-
sages with a maximum length of 288 tokens while preserving sentence boundaries (hyper-
parameter 288 tokens was taken from [Lee et al., 2019]). From each passage a sentence was
randomly selected that was consequently extracted in 90% of cases and in the rest of the
cases remained in the passage. The chosen sentence was considered a query and a passage
from which it came as positive (relevant). Pre-training examples for BFS were created
similarly, with the only difference that the positive passage was not the one containing the
query but a randomly selected passage from the same document (article).

In the finetuning phase, we used the constructed claims and their evidence as relevant
(positive) passages. There exists claims, although relatively small amount, that were
created by combining several passages from different articles (multi-hop claims). Without
prejudice to the generality of the solution, we split the combined evidence, so query is

14available from https://github.com/stanford-futuredata/ColBERT

36

https://github.com/stanford-futuredata/ColBERT

4.3. Evaluation

always in a relation with only a single evidence passage. This way we slightly increase the
amount of data by cloning the query for each part of its evidence.

Then we used this finetuned model to generate paragraph embeddings of the whole
collection, so they are prepared for retrieval. In the retrieval phase, we used the FAISS
library [Johnson et al., 2019] and constructed PCA384 Flat index for ČTK data and
Flat index for FEVER CS data. In the case of the PCA384 Flat index, the original
output of the pre-trained model with dimension 512 is transformed into a 384-dimensional
vector using PCA. This was done to lower the memory footprint. Flat index uses the full
512-dimensional vector. When given a query, the FAISS index then retrieves top-k most
relevant documents, implemented as k-means clustering.

4.3 Evaluation

We used standard precision, recall, F1 score and mean reciprocal rank (MRR) metrics
to evaluate all models. MRR corresponds to the harmonic mean of the positions of first
relevant document for each query (see equation 4.4). So it partially reflects also the ability
of a model to provide relevant documents in the front position which was in combination
with recall our key performance indicator.

precision = |(relevant documents) ∩ (retrieved documents)|
|(retrieved documents)| (4.1)

recall = |(relevant documents) ∩ (retrieved documents)|
|(relevant documents)| (4.2)

F1 = 2 · precision · recall
precision + recall (4.3)

MRR = 1
|Q|

|Q|∑
i=1

1
ranki

(4.4)

where:

Q stands for a sample of queries

ranki refers to the rank position of the first relevant document retrieved for the
i-ith query

In retrieval tasks, the output is typically a set of most relevant documents or list of
documents sorted by a relevance score. The metrics are dependent on the number of re-
turned documents and therefore it is appropriate to monitor their development depending
on the number of retrieved documents k. In that case, the metrics are marked with the
suffix @k informing about the number of returned documents as well.

37

Chapter 5
Experiments

This chapter summarizes the setup of performed experiments and their results.

5.1 Baselines

DrQA: We calculated the TF-IDF index using DrQA implementation for all unigrams
and bigrams with 224 buckets for hashing.
BM25: We computed the index and then finetuned the k1 and b hyper-parameters using
grid search on defined grid k1 ∈ [0.6, 1.2], b ∈ [0.5, 0.9] both with step 0.1. On a sample
of 10,000 training claims, we selected the best performing parameter values:

dataset k1 b

FEVER CS 0.9 0.9
ČTK 0.6 0.5

5.2 ColBERT

We tried two setups here, 64-dimensional term representation with with document trim-
ming to a maximum of 180 tokens and richer 128-dimensional term representation with
document trimming to a maximum of 220 tokens on FEVER CS. For the ČTK dataset
we counted only the larger version, as it proved to be more powerful. The query is always
truncated to a maximum of 32 tokens. Training was done on triples (see section 4.2.1)
using two NVIDIA Tesla V100 GPU’s with batch size 64, learning rate 3e-6, masked
punctuation tokens, mixed precision and L2 similarity metric.

5.3 Pretraining mBERT

We used the cased multilingual mBERT from the HuggingFace library [Wolf et al., 2020]
as the backbone model.
FEVER CS: The model was pretrained on ICT and BFS tasks on the Wikipedia articles
for 20 epochs. The training was done on 4 GPUS’s NVIDIA Tesla V100 with batch size
128, Adam optimizer with 1e-5 learning rate and no weight decay. We tried to increase the
hyper-parameter of maximal length of passage from 288 to 51215 tokens. As a reminder,
each paragraph is chopped into passages with a maximum length of 288 tokens, where

15that is a maximum capacity of the BERT model

38

5.3. Pretraining mBERT

sentences are kept in their entirety (see section 4.2.2). This did not bring any noticeable
improvement, so we kept the 288 tokens as recommended in [Lee et al., 2019].

In the finetuning phase was used the model from the pretraining phase that showed
best performance on FEVER CS development set. Then it was finetuned for next 20
epochs with the same setup except for learning rate, which was reduced to 5e-06 similarly
to [Chang et al., 2020]. As a result, we saved the model with the highest performance on
the development set.
ČTK: We utilized the model already pretrained for 20 epochs on the Wikipedia (see
above) and further pretrain it on the ČTK collection for 10 epochs with the same setup
as stated above. In the finetuning phase, the model was finetuned using real claims and
their annotated evidences for 20 epochs with 5e-06 learning rate and the rest of the setup
remain unchanged.

Figure 5.1: Pretraining on ČTK learning curve

Figure 5.2: Finetuning on ČTK v2.1 learning curve

39

5.4. Results

5.4 Results

model P@1 P@5 P@10 P@20
DRQA 42.42 13.66 7.56 4.08
Anserini BM25 finetuned 41.24 13.12 7.37 4.02
mBERT BFS+ICT 65.87 19.13 10.16 5.28
ColBERT 128 (FEVER CS) 56.33 15.45 8.20 4.29
ColBERT 128 (ČTK + FEVER CS) 45.93 13.94 7.69 4.15
ColBERT 64 (ČTK + FEVER CS) 44.21 13.20 7.28 3.93

Table 5.1: Precision at k on FEVER CS test set.

model R@1 R@5 R@10 R@20
DRQA 39.14 62.39 68.89 73.99
Anserini BM25 finetuned 38.12 60.41 67.43 73.18
mBERT BFS+ICT 61.27 87.43 91.75 94.48
ColBERT 128 (FEVER CS) 52.39 71.48 75.38 78.40
ColBERT 128 (ČTK + FEVER CS) 42.57 64.31 70.42 75.46
ColBERT 64 (ČTK + FEVER CS) 41.24 60.98 66.88 72.01

Table 5.2: Recall at k on FEVER CS test set.

model F1@1 F1@5 F1@10 F1@20
DRQA 40.72 22.42 13.63 7.73
Anserini BM25 finetuned 39.62 21.55 13.29 7.63
mBERT BFS+ICT 63.49 31.40 18.29 10.01
ColBERT 128 (FEVER CS) 54.29 25.41 14.80 8.14
ColBERT 128 (ČTK + FEVER CS) 44.19 22.91 13.86 7.86
ColBERT 64 (ČTK + FEVER CS) 42.67 21.71 13.13 7.46

Table 5.3: F1 at k on FEVER CS test set.

model MRR@1 MRR@5 MRR@10 MRR@20
DRQA 40.72 49.94 50.81 51.14
Anserini BM25 finetuned 39.39 48.09 49.02 49.44
mBERT BFS+ICT 57.57 69.32 70.05 70.26
ColBERT 128 (FEVER CS) 55.10 62.67 63.17 63.36
ColBERT 128 (ČTK + FEVER CS) 44.48 53.18 53.92 54.28
ColBERT 64 (ČTK + FEVER CS) 43.63 51.92 52.68 52.99

Table 5.4: Mean reciprocal rank at k on FEVER CS test set.

40

5.4. Results

model P@1 P@5 P@10 P@20
DRQA 12.50 5.05 3.07 1.76
Anserini BM25 finetuned 15.50 5.80 3.35 1.97
ColBERT 128 (FEVER CS + ČTK) 19.25 7.00 3.97 2.29
mBERT BFS+ICT (FEVER CS + ČTK) 0.75 0.95 0.80 0.60

Table 5.5: Precision at k on ČTK v2.1 test set.

model R@1 R@5 R@10 R@20
DRQA 12.75 25.50 31.00 35.50
Anserini BM25 finetuned 15.75 29.25 33.75 39.75
ColBERT 128 (FEVER CS + ČTK) 19.50 35.25 40.00 46.00
mBERT BFS+ICT (FEVER CS + ČTK) 1.00 5.00 8.25 12.25

Table 5.6: Recall at k on ČTK v2.1 test set.

model F1@1 F1@5 F1@10 F1@20
DRQA 12.62 8.43 5.60 3.36
Anserini BM25 finetuned 15.62 9.68 6.10 3.76
ColBERT 128 (FEVER CS + ČTK) 19.37 11.68 7.23 4.36
mBERT BFS+ICT (FEVER CS + ČTK) 0.86 1.60 1.46 1.14

Table 5.7: F1 at k on ČTK v2.1 test set.

model MRR@1 MRR@5 MRR@10 MRR@20
DRQA 13.05 17.72 18.31 18.60
Anserini BM25 finetuned 15.79 20.40 20.95 21.36
ColBERT 128 (FEVER CS + ČTK) 18.32 24.21 24.85 25.26
mBERT BFS+ICT (FEVER CS + ČTK) 1.47 2.78 3.12 3.45

Table 5.8: Mean reciprocal rank at k on ČTK v2.1 test set.

41

Conclusion

Over the course of several months, we studied a wide range of articles and literature,
conducted a series of experiments with several models, and contributed to the production
of the initial version of Czech Fact Extraction and Verification dataset using Czech News
Agency articles (ČTK). As the datasets have undergone gradual development and mod-
ifications due to successive data collection and refinement, it is not possible to subject
all experiments to a uniform comparison table. Therefore, we only present “condensed”
results on the latest versions of both datasets (see chapter 3).

In this thesis, we have investigated large-scale document retrieval methods in the fact-
checking domain. We primarily focused on end-to-end neural models and their comparison
with traditional TF-IDF and BM25 models. Traditional models proved to be very strong
and robust baselines that are quite hard to outperform by neural methods, especially in
the case of limited data. Nevertheless, both of our proposed solutions can outperform
traditional methods.

The solution based on multilingual BERT pre-trained on BFS and ICT tasks signifi-
cantly outperformed traditional baselines on FEVER CS dataset by 20% Recall@20 and
19% MRR@20. The results on the ČTK dataset are considerably weaker. We need to
examine them more thoroughly, but we already believe that this is due to several fac-
tors. First, the lack of training data (ČTK 2K vs. FEVER CS 100K), of which this ap-
proach requires a substantial amount. Secondly, the several times larger articles database
(ČTK 13.5M vs. FEVER CS 0.5M) that makes retrieval on the ČTK more challenging.
And thirdly, news texts often contain paragraphs with little or no variation in content16,
but because these paragraphs are in different articles, they have different identifiers and
are not captured by the evaluation, even though they might be relevant.

ColBERT outperformed traditional baselines by 4% Recal@20 and 12% MRR@20 on
FEVER CS and by 6% Recall@20 and almost 4% MRR@20 on ČTK. ColBERT pretrained
on the ČTK + FEVER CS triples (see section 4.2.1) decreased the performance compared
to ColBERT pretrained only on the FEVER CS triples. This is probably due to the
introduction of additional noise into the model. The memory footprint of the ColBERT
index can easily be reduced without much performance penalty. We halved the dimension
of token representation, which decreased the performance by 3% Recall@20 and only by
1% MRR@20, which confirms the findings of the ColBERT authors [Khattab et al., 2020].

This thesis also focuses marginally on data collection, more precisely on the analysis
of generated claims. The claims are analyzed in terms of potential bias in the form of
surface-level linguistic structures that may have a negative impact at later stages of fact-

16often paragraphs that provide a broader context for the report

42

checking. The existence of such structures has not been demonstrated to an extent that
would have a noticeable effect on the overall quality of the data.
Future work: In the future work, we would like to focus on experiments with a recently
published Czech language model CZERT [Sido et al., 2021] and a more robust multilingual
LM XLM-R [Conneau et al., 2020]. Furthermore, the methods for evaluation will need to
be improved, especially in view of the above-mentioned difficulties with the ČTK dataset.
It would also be interesting to explore the rapidly expanding field of efficient Transformers
that can handle long inputs.

43

Bibliography

Alammar, Jay (June 2018). The Illustrated Transformer. [online; accessed 14-12-2020].
url: https://jalammar.github.io/illustrated-transformer.

Attardi, Giuseppe (2019). WikiExtractor. https://github.com/attardi/wikiextractor.
Beltagy, Iz, Matthew E. Peters, and Arman Cohan (2020). Longformer: The Long-Document

Transformer. arXiv: 2004.05150 [cs.CL].
Binau, Julie and Henri Schulte (2020). “Danish Fact Verification: An End-to-End Machine

Learning System for Automatic Fact-Checking of Danish Textual Claims”. In:
Brown, Tom B. et al. (2020). Language Models are Few-Shot Learners. arXiv: 2005.14165

[cs.CL].
Buciluundefined, Cristian, Rich Caruana, and Alexandru Niculescu-Mizil (2006). “Model

Compression”. In: Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. KDD ’06. Philadelphia, PA, USA: Association
for Computing Machinery, pp. 535–541. url: https://doi.org/10.1145/1150402.
1150464.

Cer, Daniel et al. (2018). Universal Sentence Encoder. arXiv: 1803.11175 [cs.CL].
Chang, Wei-Cheng et al. (2020). “Pre-training tasks for embedding-based large-scale re-

trieval”. In: arXiv preprint arXiv:2002.03932.
Chen, Danqi et al. (2017). “Reading Wikipedia to Answer Open-Domain Questions”. In:

Association for Computational Linguistics (ACL).
Conneau, Alexis et al. (2020). “Unsupervised Cross-lingual Representation Learning at

Scale”. In: Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. url: http://dx.doi.org/10.18653/v1/2020.acl-main.747.

Craswell, Nick et al. (2020). Overview of the TREC 2019 deep learning track. arXiv:
2003.07820 [cs.IR].

Dai, Zhuyun and Jamie Callan (2019). Context-Aware Sentence/Passage Term Importance
Estimation For First Stage Retrieval. arXiv: 1910.10687 [cs.IR].

Dědková, Barbora (2021). “Multi-stage Methods for Document Retrieval in the Czech
Language”. https://www.overleaf.com/read/gkymfyhfkrkq. MA thesis. Czech
Technical University in Prague.

44

https://jalammar.github.io/illustrated-transformer
https://github.com/attardi/wikiextractor
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.1145/1150402.1150464
https://doi.org/10.1145/1150402.1150464
https://arxiv.org/abs/1803.11175
http://dx.doi.org/10.18653/v1/2020.acl-main.747
https://arxiv.org/abs/2003.07820
https://arxiv.org/abs/1910.10687
https://www.overleaf.com/read/gkymfyhfkrkq

Bibliography

Derczynski, Leon, Julie Binau, and Henri Schulte (July 2020). “Maintaining Quality in
FEVER Annotation”. In: Proceedings of the Third Workshop on Fact Extraction and
VERification (FEVER). Online: Association for Computational Linguistics, pp. 42–46.
url: https://www.aclweb.org/anthology/2020.fever-1.6.

Devlin, Jacob et al. (2018). “Bert: Pre-training of deep bidirectional transformers for
language understanding”. In: arXiv preprint arXiv:1810.04805.

Diggelmann, Thomas et al. (2020). CLIMATE-FEVER: A Dataset for Verification of
Real-World Climate Claims. arXiv: 2012.00614 [cs.CL].

Ding, Yingqi Qu Yuchen et al. (2020). RocketQA: An Optimized Training Approach to
Dense Passage Retrieval for Open-Domain Question Answering. arXiv: 2010.08191
[cs.CL].

Dumitrescu, Stefan, Andrei-Marius Avram, and Sampo Pyysalo (2020). “The birth of
Romanian BERT”. In: Findings of the Association for Computational Linguistics:
EMNLP 2020. url: http://dx.doi.org/10.18653/v1/2020.findings-emnlp.387.

Ein Dor, Liat et al. (July 2018). “Learning Thematic Similarity Metric from Article Sec-
tions Using Triplet Networks”. In: Proceedings of the 56th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 2: Short Papers). Melbourne, Australia:
Association for Computational Linguistics, pp. 49–54. url: https://www.aclweb.
org/anthology/P18-2009.

Gažo, Alexander (2021). “Algorithms for Document Retrieval in Czech Language Sup-
porting Long Inputs”. https://gitlab.fel.cvut.cz/gazoalex/master-thesis/-
/tree/master. MA thesis. Czech Technical University in Prague.

Hanselowski, Andreas et al. (Nov. 2018). “UKP-Athene: Multi-Sentence Textual Entail-
ment for Claim Verification”. In: Proceedings of the First Workshop on Fact Extraction
and VERification (FEVER). Brussels, Belgium: Association for Computational Lin-
guistics, pp. 103–108. url: https://www.aclweb.org/anthology/W18-5516.

Hao, Karen (Dec. 2020). A college kid created a fake, AI-generated blog. It reached 1 on
Hacker News. url: https://www.technologyreview.com/2020/08/14/1006780/ai-
gpt-3-fake-blog-reached-top-of-hacker-news/.

Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean (2015). Distilling the Knowledge in a Neural
Network. arXiv: 1503.02531 [stat.ML].

Hofstätter, Sebastian et al. (2020). Improving Efficient Neural Ranking Models with Cross-
Architecture Knowledge Distillation. arXiv: 2010.02666 [cs.IR].

Illing, Sean (Jan. 2020). ”Flood the zone with shit”: How misinformation overwhelmed our
democracy. [online; accessed 14-12-2021]. url: https://www.vox.com/policy-and-
politics/2020/1/16/20991816/impeachment-trial-trump-bannon-misinformation.

Johnson, Jeff, Matthijs Douze, and Herve Jegou (2019). “Billion-scale similarity search
with GPUs”. In: IEEE Transactions on Big Data, pp. 1–1. url: http://dx.doi.org/
10.1109/tbdata.2019.2921572.

Joshi, Pratik et al. (2020). “The State and Fate of Linguistic Diversity and Inclusion in
the NLP World”. In: Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. url: http://dx.doi.org/10.18653/v1/2020.acl-
main.560.

45

https://www.aclweb.org/anthology/2020.fever-1.6
https://arxiv.org/abs/2012.00614
https://arxiv.org/abs/2010.08191
https://arxiv.org/abs/2010.08191
http://dx.doi.org/10.18653/v1/2020.findings-emnlp.387
https://www.aclweb.org/anthology/P18-2009
https://www.aclweb.org/anthology/P18-2009
https://gitlab.fel.cvut.cz/gazoalex/master-thesis/-/tree/master
https://gitlab.fel.cvut.cz/gazoalex/master-thesis/-/tree/master
https://www.aclweb.org/anthology/W18-5516
https://www.technologyreview.com/2020/08/14/1006780/ai-gpt-3-fake-blog-reached-top-of-hacker-news/
https://www.technologyreview.com/2020/08/14/1006780/ai-gpt-3-fake-blog-reached-top-of-hacker-news/
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/2010.02666
https://www.vox.com/policy-and-politics/2020/1/16/20991816/impeachment-trial-trump-bannon-misinformation
https://www.vox.com/policy-and-politics/2020/1/16/20991816/impeachment-trial-trump-bannon-misinformation
http://dx.doi.org/10.1109/tbdata.2019.2921572
http://dx.doi.org/10.1109/tbdata.2019.2921572
http://dx.doi.org/10.18653/v1/2020.acl-main.560
http://dx.doi.org/10.18653/v1/2020.acl-main.560

Bibliography

Karpukhin, Vladimir et al. (2020). “Dense Passage Retrieval for Open-Domain Question
Answering”. In: Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP). url: http://dx.doi.org/10.18653/v1/2020.
emnlp-main.550.

Khattab, Omar and Matei Zaharia (July 2020). “ColBERT”. In: Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Information
Retrieval. Implementation: https://github.com/stanford-futuredata/ColBERT.
url: http://dx.doi.org/10.1145/3397271.3401075.

Kovach, B. and T. Rosenstiel (2007). The Elements of Journalism: What Newspeople
Should Know and the Public Should Expect. Three Rivers Press. url: https://books.
google.cz/books?id=iMA1WhtiRBkC.

Kudo, Taku (2018). “Subword Regularization: Improving Neural Network Translation
Models with Multiple Subword Candidates”. In: Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers). url:
http://dx.doi.org/10.18653/v1/P18-1007.

Lample, Guillaume and Alexis Conneau (2019). Cross-lingual Language Model Pretraining.
arXiv: 1901.07291 [cs.CL].

Lee, Kenton, Ming-Wei Chang, and Kristina Toutanova (2019). “Latent Retrieval for
Weakly Supervised Open Domain Question Answering”. In: Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics. url: http://dx.
doi.org/10.18653/v1/P19-1612.

Li, Bo et al. (2021). Scaling End-to-End Models for Large-Scale Multilingual ASR. arXiv:
2104.14830 [cs.CL].

Lin, Jimmy et al. (2021). Pyserini: An Easy-to-Use Python Toolkit to Support Replicable
IR Research with Sparse and Dense Representations. arXiv: 2102.10073 [cs.IR].
url: https://github.com/castorini/anserini.

Lu, Wenhao, Jian Jiao, and Ruofei Zhang (2020). TwinBERT: Distilling Knowledge to
Twin-Structured BERT Models for Efficient Retrieval. arXiv: 2002.06275 [cs.IR].

Macková, Kateřina and Milan Straka (2020). “Reading Comprehension in Czech via Ma-
chine Translation and Cross-Lingual Transfer”. In: Lecture Notes in Computer Science,
pp. 171–179. url: http://dx.doi.org/10.1007/978-3-030-58323-1_18.

Madison, May (2020). A Survey of Long-Term Context in Transformers. [online; accessed
15-04-2021]. url: https : / / www . pragmatic . ml / a - survey - of - methods - for -
incorporating-long-term-context.

Manning, Christopher (2008). Introduction to information retrieval. New York: Cambridge
University Press.

Martin, Louis et al. (2020). “CamemBERT: a Tasty French Language Model”. In: Pro-
ceedings of the 58th Annual Meeting of the Association for Computational Linguistics.
url: http://dx.doi.org/10.18653/v1/2020.acl-main.645.

Mitra Bhaskar Craswell Nick, et al. (2018). An introduction to neural information retrieval.
Niven, Timothy and Hung-Yu Kao (2019). “Probing Neural Network Comprehension of

Natural Language Arguments”. In: Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics. url: http://dx.doi.org/10.18653/v1/
P19-1459.

46

http://dx.doi.org/10.18653/v1/2020.emnlp-main.550
http://dx.doi.org/10.18653/v1/2020.emnlp-main.550
https://github.com/stanford-futuredata/ColBERT
http://dx.doi.org/10.1145/3397271.3401075
https://books.google.cz/books?id=iMA1WhtiRBkC
https://books.google.cz/books?id=iMA1WhtiRBkC
http://dx.doi.org/10.18653/v1/P18-1007
https://arxiv.org/abs/1901.07291
http://dx.doi.org/10.18653/v1/P19-1612
http://dx.doi.org/10.18653/v1/P19-1612
https://arxiv.org/abs/2104.14830
https://arxiv.org/abs/2102.10073
https://github.com/castorini/anserini
https://arxiv.org/abs/2002.06275
http://dx.doi.org/10.1007/978-3-030-58323-1_18
https://www.pragmatic.ml/a-survey-of-methods-for-incorporating-long-term-context
https://www.pragmatic.ml/a-survey-of-methods-for-incorporating-long-term-context
http://dx.doi.org/10.18653/v1/2020.acl-main.645
http://dx.doi.org/10.18653/v1/P19-1459
http://dx.doi.org/10.18653/v1/P19-1459

Bibliography

Nogueira, Rodrigo and Kyunghyun Cho (2019a). Passage Re-ranking with BERT. arXiv:
1901.04085 [cs.IR].

Nogueira, Rodrigo, Jimmy Lin, and AI Epistemic (2019b). “From doc2query to docTTTT-
Tquery”. In:

Nogueira, Rodrigo et al. (2019c). Document Expansion by Query Prediction. arXiv: 1904.
08375 [cs.IR].

Přibáň, Pavel, Tomáš Hercig, and Josef Steinberger (Sept. 2019). “Machine Learning Ap-
proach to Fact-Checking in West Slavic Languages”. In: Proceedings of the Interna-
tional Conference on Recent Advances in Natural Language Processing (RANLP 2019).
Varna, Bulgaria: INCOMA Ltd., pp. 973–979. url: https : / / www . aclweb . org /
anthology/R19-1113.

Prokop, Daniel (2020). Slepé skvrny: o chudobě, vzděláváńı, populismu a daľśıch výzvách
české společnosti. Host.

Radford, Alec et al. (2019). “Language models are unsupervised multitask learners”. In:
OpenAI blog 1.8, p. 9.

Reimers, Nils and Iryna Gurevych (2019). “Sentence-BERT: Sentence Embeddings us-
ing Siamese BERT-Networks”. In: Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP). url: http://dx.doi.org/10.
18653/v1/D19-1410.

— (2020). “Making Monolingual Sentence Embeddings Multilingual using Knowledge Dis-
tillation”. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP). url: http://dx.doi.org/10.18653/v1/2020.emnlp-
main.365.

Robertson, Stephen and Hugo Zaragoza (2009). The probabilistic relevance framework:
BM25 and beyond. Now Publishers Inc.

Rogers, Anna, Olga Kovaleva, and Anna Rumshisky (2020). “A Primer in BERTology:
What We Know About How BERT Works”. In: Transactions of the Association for
Computational Linguistics 8, pp. 842–866. url: http://dx.doi.org/10.1162/tacl_
a_00349.

Rosset, Corby (Feb. 2020). Turing-NLG: A 17-billion-parameter language model by Mi-
crosoft. url: https://www.microsoft.com/en-us/research/blog/turing-nlg-a-
17-billion-parameter-language-model-by-microsoft/.

Roy, Aurko et al. (Feb. 2021). “Efficient Content-Based Sparse Attention with Routing
Transformers”. In: Transactions of the Association for Computational Linguistics 9,
pp. 53–68. url: http://dx.doi.org/10.1162/tacl_a_00353.

Ruder, Sebastian (2021). Recent Advances in Language Model Fine-tuning. http://ruder.
io/recent-advances-lm-fine-tuning.

Sanh, Victor et al. (2019). “DistilBERT, a distilled version of BERT: smaller, faster,
cheaper and lighter”. In: ArXiv abs/1910.01108.

Schuster, M. and K. Nakajima (2012). “Japanese and Korean voice search”. In: 2012
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 5149–5152.

47

https://arxiv.org/abs/1901.04085
https://arxiv.org/abs/1904.08375
https://arxiv.org/abs/1904.08375
https://www.aclweb.org/anthology/R19-1113
https://www.aclweb.org/anthology/R19-1113
http://dx.doi.org/10.18653/v1/D19-1410
http://dx.doi.org/10.18653/v1/D19-1410
http://dx.doi.org/10.18653/v1/2020.emnlp-main.365
http://dx.doi.org/10.18653/v1/2020.emnlp-main.365
http://dx.doi.org/10.1162/tacl_a_00349
http://dx.doi.org/10.1162/tacl_a_00349
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
http://dx.doi.org/10.1162/tacl_a_00353
http://ruder.io/recent-advances-lm-fine-tuning
http://ruder.io/recent-advances-lm-fine-tuning

Bibliography

Schwartz, Roy et al. (Nov. 2020). “Green AI”. In: Communications of the ACM 63.12,
pp. 54–63. url: http://dx.doi.org/10.1145/3381831.

Sennrich, Rico, Barry Haddow, and Alexandra Birch (2016). “Neural Machine Translation
of Rare Words with Subword Units”. In: Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers). url: http:
//dx.doi.org/10.18653/v1/P16-1162.

Shoeybi, Mohammad et al. (2019). Megatron-LM: Training Multi-Billion Parameter Lan-
guage Models Using Model Parallelism. arXiv: 1909.08053 [cs.CL].

Sido, Jakub et al. (2021). Czert – Czech BERT-like Model for Language Representation.
arXiv: 2103.13031 [cs.CL].

Silverman, Craig (2014). Verification and Fact Checking. [online; accessed 04-09-2021].
url: https://datajournalism.com/read/handbook/verification-1.

Thorne, James and Andreas Vlachos (2018a). “Automated Fact Checking: Task Formu-
lations, Methods and Future Directions”. In: Proceedings of the 27th International
Conference on Computational Linguistics. Santa Fe, New Mexico, USA: Association
for Computational Linguistics, pp. 3346–3359. url: https : / / www . aclweb . org /
anthology/C18-1283.

Thorne, James et al. (2018b). “FEVER: a large-scale dataset for fact extraction and veri-
fication”. In: arXiv preprint arXiv:1803.05355.

Thorne, James et al. (2018c). “The fact extraction and verification (fever) shared task”.
In: arXiv preprint arXiv:1811.10971.

— (Nov. 2019). “The FEVER2.0 Shared Task”. In: Proceedings of the Second Workshop
on Fact Extraction and VERification (FEVER). Hong Kong, China: Association for
Computational Linguistics, pp. 1–6. url: https://www.aclweb.org/anthology/D19-
6601.

Turnbull, Doug (Oct. 2015). BM25 The Next Generation of Lucene Relevance. [online;
accessed 04-02-2021]. url: https://opensourceconnections.com/blog/2015/10/
16/bm25-the-next-generation-of-lucene-relevation.

Ullrich, Herbert (2021). “Dataset for Automated Fact Checking in Czech Language”.
https : / / www . overleaf . com / read / nfxjywqwthgx. MA thesis. Czech Technical
University in Prague.

Vaswani, Ashish et al. (2017). “Attention is all you need”. In: Advances in neural infor-
mation processing systems, pp. 5998–6008.

Vattimo, Gianni (2013). Transparentńı společnost. Rubato.
Wang, Sinong et al. (2020). Linformer: Self-Attention with Linear Complexity. arXiv:

2006.04768 [cs.LG].
Wolf, Thomas et al. (Oct. 2020). “Transformers: State-of-the-Art Natural Language Pro-

cessing”. In: Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations. Online: Association for Computational
Linguistics, pp. 38–45. url: https://www.aclweb.org/anthology/2020.emnlp-
demos.6.

48

http://dx.doi.org/10.1145/3381831
http://dx.doi.org/10.18653/v1/P16-1162
http://dx.doi.org/10.18653/v1/P16-1162
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/2103.13031
https://datajournalism.com/read/handbook/verification-1
https://www.aclweb.org/anthology/C18-1283
https://www.aclweb.org/anthology/C18-1283
https://www.aclweb.org/anthology/D19-6601
https://www.aclweb.org/anthology/D19-6601
https://opensourceconnections.com/blog/2015/10/16/bm25-the-next-generation-of-lucene-relevation
https://opensourceconnections.com/blog/2015/10/16/bm25-the-next-generation-of-lucene-relevation
https://www.overleaf.com/read/nfxjywqwthgx
https://arxiv.org/abs/2006.04768
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

Bibliography

Yang, Wei et al. (July 2019a). “Critically Examining the “Neural Hype””. In: Proceedings
of the 42nd International ACM SIGIR Conference on Research and Development in
Information Retrieval. url: http://dx.doi.org/10.1145/3331184.3331340.

Yang, Wei et al. (2019b). “End-to-End Open-Domain Question Answering with Bert-
serini”. In: Proceedings of the 2019 Conference of the North. url: http://dx.doi.
org/10.18653/v1/N19-4013.

Yilmaz, Zeynep Akkalyoncu et al. (2019). “Applying BERT to document retrieval with
birch”. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP): System Demonstrations, pp. 19–24.

49

http://dx.doi.org/10.1145/3331184.3331340
http://dx.doi.org/10.18653/v1/N19-4013
http://dx.doi.org/10.18653/v1/N19-4013

Acronyms

BERT Bidirectional Encoder Representations from Transformers

BM25 Best Match 25

BOW Bag of words

BPE Byte Pair Encoding

ČTK Česká Tisková Kancelář (Czech News Agency)

DR Document Retrieval

FAISS Facebook AI Similarity Search

FC Fully connected

FEVER Fact Extraction and Verification

IR Information Retrieval

LM Language Model

MLM Masked Language Model

NLI Natural Language Inference

NLP Natural Language Processing

PE Positional Encoding

QA Question Answering

SVD Singular value decomposition

TF-IDF Term Frequency - Inverse Document Frequency

TREC Text Retrieval Conference

50

Content of enclosed repository

The experimental repository is stored here https://gitlab.fel.cvut.cz/factchecking/
experimental-martin and can be made accessible on request. Later, it will be eventually
added also here https://github.com/ryparmar/master-thesis.

repository.zip..repository
anserini......................................Anserini implementation sources
drqa...DrQA implementation sources
ColBERT......................................ColBERT implementation sources
claims-quality.....data quality metrics implementation sources and full results
pretraining......................ICT, BFS pretraining implementation sources
requirements.txt.................Python virtual environment requirements file
README.md ... Description file

51

https://gitlab.fel.cvut.cz/factchecking/experimental-martin
https://gitlab.fel.cvut.cz/factchecking/experimental-martin
https://github.com/ryparmar/master-thesis

	Introduction
	Fact-checking
	Problem description and goals
	Related work

	Background
	Document Retrieval
	Traditional Approach
	Language Modelling
	Hybrid Approach
	Neural Approach

	Datasets
	FEVER CS
	ČTK
	Data Quality

	Proposed Solutions
	Baseline
	Neural Models
	Evaluation

	Experiments
	Baselines
	ColBERT
	Pretraining mBERT
	Results

	Conclusion
	Bibliography
	A1 Acronyms
	A2 Content of enclosed repository

